Inquiry Into Physics
8th Edition
ISBN: 9781305959422
Author: Ostdiek, Vern J.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 8C
To determine
To prove:
The work done by a force is equal to the kinetic energy of the object.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Since the initial potential energy and final kinetic energy are zero, our equation now becomes
EP,f = EK,i.
We can then substitute the formula for kinetic energy,
EK = 1/2mv2,
and the formula for gravitational potential energy,
EP = mgh,
mghf = 1/2mvi2.
Now it's just a matter of doing the algebra, solving for the final height
hf,
and substituting values to find
hf.
Notice that the mass m divides out of both sides of the equation, so the value of the mass is not needed to find the final height.
Calculate the maximum height of the ball in meters.
hf = __________ m
From a building which is 60 meters height, a ball was thrown horizontally with kinetics energy of 45 Joules. If the ball weighs 300 grams, compute for the ball’s kinetic energy when it touches the ground. Give your answer in Joules. (KE = 1/2mV1^2)
Suppose that you want to build a tower out of bricks. Suppose that each brick has a mass of 0.5 kg and is 0.1 m tall. You want the tower to be 20 bricks high, and we want to calculate how much energy is required to build it. The physics fact that you need is this: the energy, E (in Joules) required to lift a mass m (in kg) a height h (in m) is E = mgh (where g is the acceleration due to gravity - for this problem, you can take g to be 10 m/s2.)
1. We will assume that no energy is required to place the first brick in the tower, since it is already on the ground. What about the second brick? How high must if be lifted to be placed on top of the first brick? How much energy does that require? What about the third brick? The tenth brick?
Chapter 3 Solutions
Inquiry Into Physics
Ch. 3 - Distinguish between what a physicist and a...Ch. 3 - If the population in a certain country was...Ch. 3 - Describe the basic features of the “lighthouse”...Ch. 3 - Prob. 2AACh. 3 - Prob. 1PIPCh. 3 - Prob. 1MIOCh. 3 - Repeat Exercise I for Section 3.2 on linear...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...
Ch. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 8QCh. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 10QCh. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 12QCh. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 16QCh. 3 - Prob. 17QCh. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 21QCh. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 25QCh. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 28QCh. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 30QCh. 3 - Prob. 31QCh. 3 - Prob. 32QCh. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 34QCh. 3 - (¦ Indicates a review question, which means it...Ch. 3 - A sprinter with a mass of 65 kg reaches a speed of...Ch. 3 - Which has the larger linear momentum: a 2,000-kg...Ch. 3 - In Section 2.4, we computed the force needed to...Ch. 3 - A runner with a mass of 80 kg accelerates from 0...Ch. 3 - In Section 1.4, we considered the collision of a...Ch. 3 - A basketball with a mass of 0.62 kg falls...Ch. 3 - A pitcher throws a 0.5-kg ball of clay at a 6-kg...Ch. 3 - A 3,000-kg truck runs into the rear of a 1,000-kg...Ch. 3 - A 50-kg boy on roller skates moves with a speed of...Ch. 3 - . Two persons on ice skates stand face to face and...Ch. 3 - . A loaded gun is dropped on a frozen lake. The...Ch. 3 - . A running back with a mass of 80 kg and a speed...Ch. 3 - . A motorist runs out of gas on a level road 200 m...Ch. 3 - . In Figure 3.10, the rock weighs 100 lb and is...Ch. 3 - . A weight lifter raises a 100-kg barbell to a...Ch. 3 - Prob. 16PCh. 3 - . A personal watercraft and rider have a combined...Ch. 3 - As it orbits Earth, the 11,000-kg Hubble Space...Ch. 3 - . The kinetic energy of a motorcycle and rider is...Ch. 3 - . In compressing the spring in a toy dart gun,...Ch. 3 - . An archer using a simple bow exerts a force of...Ch. 3 - A worker at the top of a 629-m-tall television...Ch. 3 - . A 25-kg child uses a pogo stick to bounce up and...Ch. 3 - . A student drops a water balloon out of a dorm...Ch. 3 - . A child on a swing has a speed of 7.7 m/s at the...Ch. 3 - . The cliff divers at Acapulco, Mexico, jump off a...Ch. 3 - . At NASA's Zero Gravity Research Facility in...Ch. 3 - . The fastest that a human has run is about 12...Ch. 3 - . A bicycle and rider going 10 m/s approach a...Ch. 3 - . In January 2003, an 18-year-old student gained a...Ch. 3 - The ceiling of an arena is 20 m above the floor....Ch. 3 - . Compute how much kinetic energy was “lost” in...Ch. 3 - Compute how much kinetic energy was “lost” in the...Ch. 3 - . A 1,000-W motor powers a hoist used to lift cars...Ch. 3 - . How long does it take a worker producing 200 W...Ch. 3 - . An elevator is able to raise 1,000 kg to a...Ch. 3 - . A particular hydraulic pile driver uses a ram...Ch. 3 - . A compact car can climb a hill in 10 s. The top...Ch. 3 - . In the annual Empire State Building race,...Ch. 3 - . It takes 100 minutes for a middle-aged physics...Ch. 3 - . Two small 0.25-kg masses are attached to...Ch. 3 - Rank the following three collisions in terms of...Ch. 3 - A bullet with a mass of 0.01 kg is tired...Ch. 3 - In a head-on, inelastic collision, a 4,000-kg...Ch. 3 - Prob. 4CCh. 3 - Prob. 5CCh. 3 - The "shot" used in the shot-put event is a metal...Ch. 3 - Prob. 7CCh. 3 - Prob. 8CCh. 3 - A series of five 0.1-kg spheres are arrayed along...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Rank the following quantities of energy from largest to the smallest. State if any are equal. (a) the absolute value of the average potential energy of the SunEarth system (b) the average kinetic energy of the Earth in its orbital motion relative to the Sun (c) the absolute value of the total energy of the SunEarth systemarrow_forwardAn object is dropped from a height of 12m. At what height will its kinetic energy and its potential energy be equal? Explain your answer with proper equations and calculations.arrow_forwardCan you please answer the following questions Our Sun shines bright with a luminosity of 3.828 x 1026 Watt. Her energy is responsible for manyprocesses and the habitable temperatures on the Earth that make our life possible.(a) Calculate the amount of energy arriving on the Earth in a single day.(b) To how many litres of heating oil (energy density: 37.3 x 106J/litre) is this equivalent?(c) The Earth reflects 30% of this energy: Determine the temperature on Earth’s surface.(d) What other factors should be considered to get an even more precise temperature estimate?Note: The Earth’s radius is 6370 km; the Sun’s radius is 696 x 103 km; 1 AU is 1.495 x 108 km.arrow_forward
- An object of mass m₁ is located at a height h₁ above the ground (that is considered as the reference for the gravitational potential energy, PE, = 0) and has a potential energy PE 1. If the mass is doubled (m₂ = 2m₂) and the height is reduced to h₂ = then the new potential energy PE92 will be equal to: h₁ PEg2= PEg1 PEg2= 2 PEg1 PEg2= 4 PEg1 O PEg2= 0.25 PEg1 O PEg2= 0.5 PEg1arrow_forwardWe are now able to define a mathematical formula for gravitational potential energy. Near the Earth's surface, the gravitational potential energy of a system consisting of the earth and an object with a mass m is EP = mgh, where g is the acceleration of gravity (9.80 m/s2) and h is the height above ground level (positive upward). Note that the "ground level" could really be any height we choose, because what's really important is the change in potential energy. The difference between two heights always gives the same change in potential energy, regardless of where we set the "zero" of height. In other words, if we find the change in potential energy ΔEP = EP,f − EP,i, the final potential energy minus the initial, we have ΔEP = mghf − mghi = mgΔh. The change in gravitational potential energy is just mg times the change in height. Let's return to our ball-Earth example, only now let's examine a case where a ball is rising in the air. You toss a ball with a mass of 0.703 kg upward.…arrow_forwardAs shown in the figure below, two masses m, 5,50 kg and my which has a mass 60.0% that of my, are attached to a cord of negligible mass which passes over a frictionless puley also of negligible mass. If m, and m, start from rest, after they have each traveled a distance - 1.70 m, use energy content to determine the following. M₂ (a) speed v of the masses m/s (b) magnitude of the tension T in the cordarrow_forward
- What is the mass of an object moving at a speed 7.1 m/s that has a kinetic energy 242 J? Give your answer in kilograms and do not put unit on your answer.arrow_forwardWhat is the kinetic energy of a car with a mass of 1825 kg if it's traveling at 19.68 m/s? answer in exponential form pleasearrow_forwardA spaceship needs a lot of fuel to reach the geostationary orbit. Compute the required height for a geostationary orbit and the potential energy for one kilogram (the potential of the geostationary orbit). Compare that value to the energy content of rocket fuels, i.e. energy per kilogram. What is the potential to leave our planet completely?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY