. An archer using a simple bow exerts a force of 180 N to draw back the bow string 0.50 m. (a) What is the average work done by the archer in preparing to launch her arrow? (Hint: Compute the average work as you would any average quantity: average work = [final work - initial work].) (b) If all the work is converted into the kinetic energy of the arrow upon its release, what is the arrow's speed as it leaves the bow? Assume the mass of the arrow is 0.021 kg and ignore any kinetic energy in the bow as it relaxes to its original shape. (c) If the arrow is shot straight up, what is the maximum height achieved by the arrow? Ignore any effects due to air resistance in making your assessment.
. An archer using a simple bow exerts a force of 180 N to draw back the bow string 0.50 m. (a) What is the average work done by the archer in preparing to launch her arrow? (Hint: Compute the average work as you would any average quantity: average work = [final work - initial work].) (b) If all the work is converted into the kinetic energy of the arrow upon its release, what is the arrow's speed as it leaves the bow? Assume the mass of the arrow is 0.021 kg and ignore any kinetic energy in the bow as it relaxes to its original shape. (c) If the arrow is shot straight up, what is the maximum height achieved by the arrow? Ignore any effects due to air resistance in making your assessment.
Solution Summary: The author concludes that the average work done by archer is 45J. The kinetic energy of an object is given as KE=12mv2.
. An archer using a simple bow exerts a force of 180 N to draw back the bow string 0.50 m. (a) What is the average work done by the archer in preparing to launch her arrow? (Hint: Compute the average work as you would any average quantity: average work = [final work - initial work].) (b) If all the work is converted into the kinetic energy of the arrow upon its release, what is the arrow's speed as it leaves the bow? Assume the mass of the arrow is 0.021 kg and ignore any kinetic energy in the bow as it relaxes to its original shape. (c) If the arrow is shot straight up, what is the maximum height achieved by the arrow? Ignore any effects due to air resistance in making your assessment.
Consider the circuit shown in the figure. The battery has emf ε = 69 volts and negligible internal resistance. The inductance is L = 0.4 H and the resistances are R 1 = 12 Ω and R 2 = 9.0 Ω. Initially the switch S is open and no currents flow. Then the switch is closed. After leaving the switch closed for a very long time, it is opened again. Just after it is opened, what is the current in R 1?
A capacitor with a capacitance of C = 5.95×10−5 F is charged by connecting it to a 12.5 −V battery. The capacitor is then disconnected from the battery and connected across an inductor with an inductance of L = 1.55 H . At the time 2.35×10−2 s after the connection to the inductor is made, what is the current in the inductor? At that time, how much electrical energy is stored in the inductor?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.