Inquiry Into Physics
8th Edition
ISBN: 9781305959422
Author: Ostdiek, Vern J.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 19Q
(Indicates a review question, which means it requires only a basic understanding of the material to answer. Questions without tins designation typically require integrating or extending the concepts presented thus far.)
. Solar-powered spotlights have batteries that are charged by solar cells during the day and then operate lights at night. Describe the energy conversions in this entire process, starting with the Sun's nuclear energy and ending with the light from the spotlight being absorbed by the surroundings. Name all of the forms of energy that are involved.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Answer all of them plz and sketch it
Consider a cylindrical tank that is completely filled with water. The cylinder has a radius of r= 2 m and a length of /= 10 m.
Waer i e
Calculate the work in megajoules (1 MJ -1x 10 J) required to pump all water out of the tank. The density of water is
1000 kg/m. Assume g = 9.8 m/s.
(Use decimal notation, Give your answer to three decimal places.)
work:
MJ
1) Prof. K. took a Tesla Model S for a test drive. The car weighs 4,500 lb and can accelerate from
0 to 60 mph in 2.27 seconds. The car has a 581 kW battery pack. Help Prof. K. determine the
efficiency of the vehicle [Ans. to Check 55.5%]. Note: The equation we learned in class P = E v
ONLY APPLIES if velocity is constant. Use the steps below to guide your thought process.
Develop a symbolic relationship for the force required to move the car forward.
Compute the work done by the car (in Ib-ft).
Calculate the power required to do this work (in kW).
Chapter 3 Solutions
Inquiry Into Physics
Ch. 3 - Distinguish between what a physicist and a...Ch. 3 - If the population in a certain country was...Ch. 3 - Describe the basic features of the “lighthouse”...Ch. 3 - Prob. 2AACh. 3 - Prob. 1PIPCh. 3 - Prob. 1MIOCh. 3 - Repeat Exercise I for Section 3.2 on linear...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...
Ch. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 8QCh. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 10QCh. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 12QCh. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 16QCh. 3 - Prob. 17QCh. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 21QCh. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 25QCh. 3 - (Indicates a review question, which means it...Ch. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 28QCh. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 30QCh. 3 - Prob. 31QCh. 3 - Prob. 32QCh. 3 - (Indicates a review question, which means it...Ch. 3 - Prob. 34QCh. 3 - (¦ Indicates a review question, which means it...Ch. 3 - A sprinter with a mass of 65 kg reaches a speed of...Ch. 3 - Which has the larger linear momentum: a 2,000-kg...Ch. 3 - In Section 2.4, we computed the force needed to...Ch. 3 - A runner with a mass of 80 kg accelerates from 0...Ch. 3 - In Section 1.4, we considered the collision of a...Ch. 3 - A basketball with a mass of 0.62 kg falls...Ch. 3 - A pitcher throws a 0.5-kg ball of clay at a 6-kg...Ch. 3 - A 3,000-kg truck runs into the rear of a 1,000-kg...Ch. 3 - A 50-kg boy on roller skates moves with a speed of...Ch. 3 - . Two persons on ice skates stand face to face and...Ch. 3 - . A loaded gun is dropped on a frozen lake. The...Ch. 3 - . A running back with a mass of 80 kg and a speed...Ch. 3 - . A motorist runs out of gas on a level road 200 m...Ch. 3 - . In Figure 3.10, the rock weighs 100 lb and is...Ch. 3 - . A weight lifter raises a 100-kg barbell to a...Ch. 3 - Prob. 16PCh. 3 - . A personal watercraft and rider have a combined...Ch. 3 - As it orbits Earth, the 11,000-kg Hubble Space...Ch. 3 - . The kinetic energy of a motorcycle and rider is...Ch. 3 - . In compressing the spring in a toy dart gun,...Ch. 3 - . An archer using a simple bow exerts a force of...Ch. 3 - A worker at the top of a 629-m-tall television...Ch. 3 - . A 25-kg child uses a pogo stick to bounce up and...Ch. 3 - . A student drops a water balloon out of a dorm...Ch. 3 - . A child on a swing has a speed of 7.7 m/s at the...Ch. 3 - . The cliff divers at Acapulco, Mexico, jump off a...Ch. 3 - . At NASA's Zero Gravity Research Facility in...Ch. 3 - . The fastest that a human has run is about 12...Ch. 3 - . A bicycle and rider going 10 m/s approach a...Ch. 3 - . In January 2003, an 18-year-old student gained a...Ch. 3 - The ceiling of an arena is 20 m above the floor....Ch. 3 - . Compute how much kinetic energy was “lost” in...Ch. 3 - Compute how much kinetic energy was “lost” in the...Ch. 3 - . A 1,000-W motor powers a hoist used to lift cars...Ch. 3 - . How long does it take a worker producing 200 W...Ch. 3 - . An elevator is able to raise 1,000 kg to a...Ch. 3 - . A particular hydraulic pile driver uses a ram...Ch. 3 - . A compact car can climb a hill in 10 s. The top...Ch. 3 - . In the annual Empire State Building race,...Ch. 3 - . It takes 100 minutes for a middle-aged physics...Ch. 3 - . Two small 0.25-kg masses are attached to...Ch. 3 - Rank the following three collisions in terms of...Ch. 3 - A bullet with a mass of 0.01 kg is tired...Ch. 3 - In a head-on, inelastic collision, a 4,000-kg...Ch. 3 - Prob. 4CCh. 3 - Prob. 5CCh. 3 - The "shot" used in the shot-put event is a metal...Ch. 3 - Prob. 7CCh. 3 - Prob. 8CCh. 3 - A series of five 0.1-kg spheres are arrayed along...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (Indicates a review question, which means it requires only a basic understanding of the material to answer. Questions without this designation typically require integrating or extending the concepts presented thus far.) 15. How can the gravitational potential energy of something be negative?arrow_forward(¦ Indicates a review question, which means it requires only a basic understanding of the material to answer. Questions without this designation typically require integrating or extending the concepts presented thus far.) . A potato will cook faster in a conventional oven if a large nail is inserted into it. Why?arrow_forward(Indicates a review question, which means it requires only a basic understanding of the material to answer. Questions without this designation typically require integrating or extending the concepts presented thus far.) 9. When climbing a flight of stairs, do you do work on the stairs? Do the stairs do work on you?arrow_forward
- (Indicates a review question, which means it requires only a basic understanding of the material to answer. Questions without this designation typically require integrating or extending the concepts presented thus far.) Why is it that a person can lie still on a "bed" of nails (Figure 4.53) without suffering any serious injuries but would incur severe puncture wounds to his feet if he tried to stand barefoot on the same "bed"?arrow_forward(Indicates a review question, which means it requires only a basic understanding of the material to answer. Questions without this designation typically require integrating or extending the concepts presented thus far.) An astronaut working with many tools some distance away from a spacecraft is stranded when the "maneuvering unit" malfunctions. How can the astronaut return to the spacecraft by sacrificing some of the tools?arrow_forward(Indicates a review question, which means it requires only a basic understanding of the material to answer. Questions without this designation typically require integrating or extending the concepts presented thus far.) 27. How are the physical concepts power and speed similar?arrow_forward
- (Indicates a review question, which means it requires only a basic understanding of the material to answer. Questions without this designation typically require integrating or extending the concepts presented thus far.) 29. A person runs up several flights of stairs and is exhausted at the top. Later, the same person walks up the same stairs and does not feel as tired. Why is this? Ignoring air resistance, does it take more work or energy to run up the stairs than to walk up?arrow_forward(Indicates a review question, which means it requires only a basic understanding of the material to answer. Questions without this designation typically require integrating or extending the concepts presented thus far.) 11. Identify as many different ways as you can for giving energy to a basketball.arrow_forward(Indicates a review question, which means it requires only a basic understanding of the material to answer. Questions without this designation typically require integrating or extending the concepts presented thus far.) . Truck drivers approaching a steep hill that they must climb often increase their speed. What good does this do, if any?arrow_forward
- (Indicates a review question, which means it requires only a basic understanding of the material to answer. Questions without this designation typically require integrating or extending the concepts presented thus far.) . A mass m is attached to a spring with spring constant k, as shown in Figure 2.53. The mass is pulled to the right a distance of 0.2 m and released. Rank the following spring-mass combinations according to their oscillation periods from shortest to longest. If any combinations have the same period, give them the same rank. You should assume that there is no friction between the mass and the horizontal surface. (a) k = 0.5 N/m: m 0.25 kg (b) k = 0.5 N/m: m 0.50 kg (c) k = 0.5 N/m; m 1.00 kg (d) k = 1.0 N/m: m 0.25 kg (e) k = 1.0 N/m: m 0.50 kgarrow_forward(Indicates a review question, which means it requires only a basic understanding of the material to answer. Questions without this designation typically require integrating or extending the concepts presented thus far.) 6. Describe several things you have done today that involved doing work. Are you doing work right now?arrow_forwardWhile running, a person dissipates about 0.60 J ofmechanical energy per step per kilogram of body mass. If a60. - kg person develops a power of 70. W during a race, how fastis the person running? (Assume a running step is 1.5 m long.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY