Concept explainers
An X-ray photon of wavelength 0.989 nm strikes a surface. The emitted electron has a kinetic energy of 969 eV. What is the binding energy of the electron in kJ/mol? Hint The kinetic energy of the electron is equal to the energy of the photon (hv) minus the binding energy of the electron (Φ):
KE = hv — Φ.
Trending nowThis is a popular solution!
Chapter 3 Solutions
Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
- A photoemissive material has a threshold energy, Emin = 5 1019 J. Will 300. nm radiation eject electrons from the material? Explain.arrow_forwardDoes the main emission line for SrCl2 have a longer or shorter wavelength than that of the yellow line from NaCI?arrow_forwardA particular microwave oven delivers 750 watts. (A watt is a unit of power, which is the joules of energy delivered, or used, per second.) If the oven uses microwave radiation of wavelength 12.6 cm, how many photons of this radiation are required to heat 1.00 g of water 1.00C, assuming that all of the photons are absorbed?arrow_forward
- An FM radio station broadcasts at a frequency of 101.3 MHz. What is the wavelength, in meters and nanometers, of this radiation?arrow_forward6.20 When light with a wavelength of 58.5 nm strikes the surface of tin metal, electrons are ejected with a maximum kinetic energy of 2.691018 J. What is the binding energy of these electrons to the metal?arrow_forwardIn X-ray fluorescence spectroscopy, a material can be analyzed for its constituent elements by radiating the material with short-wavelength X rays, which induce the atoms to emit longer-wavelength X rays characteristic of those atoms. Tungsten, for example, emits characteristic X rays of wavelength 0.1476 nm. If an electron has an equivalent wavelength, what is its kinetic energy?arrow_forward
- An excited atom can release some or all of its excess energy by emitting a(n) and thus move to a lower energy state.arrow_forward6.101 Laser welding is a technique in which a tightly focused laser beam is used to deposit enough energy to weld metal parts together. Because the entire process can be automated, it is commonly used in many large-scale industries, including the manufacture of automobiles. In order to achieve the desired weld quality, the steel parts being joined must absorb energy at a rate of about 104 W/mm2. (Recall that 1 W = 1 J/s.) A particular laser welding system employs a Nd:YAG laser operating at a wavelength of 1.06m ; at this wavelength steel will absorb about 80% of the incident photons. If the laser beam is focused to illuminate a circular spot with a diameter of 0.02 inch, what is the minimum power (in watts) that the laser must emit to reach the 104 W/mm2 threshold? How many photons per second does this correspond to? (For simplicity, assume that the energy from the laser does not penetrate into the metal to any significant depth.)arrow_forwardFor each of the following combinations of quantum numbers, make changes that produce an allowed combination. Count 3 for each change of n, 2 for each change of I, and 1 for each change of mi. What is the lowest possible count that you can obtain? a n = 3, I = 0, mi = 2 b n = 5, I = 5, mi = 4 c n = 3, I = 3, mi = 3 d n = 5, I = 6, mi = 3arrow_forward
- Neutrons are used to obtain images of the hydrogen atoms in molecules. What energy must be imparted to each neutron in a neutron beam to obtain a wavelength of 10.0 pm? Obtain the energy in electron volts (eV) (1 eV = 1.602 1019 J).arrow_forwardSpectroscopists have observed He+ in outer space. This ion is a one-electron species like a neutral hydrogen atom. Calculate the energy of the photon emitted for the transition from the n = 5 to the n = 3 state in this ion using the equation: En = − Z2/n2 (2.179 × 10−18 J). Z is the positive charge of the nucleus and n is the principal quantum number. In what part of the electromagnetic spectrum does this radiation lie?arrow_forwardLight with a wavelength of 405 nm fell on a strontium surface, and electrons were ejected. If the speed of an ejected electron is 3.36 105 m/s, what energy was expended in removing the electron from the metal? Express the answer in joules (per electron) and in kilojoules per mole (of electrons).arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning