Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
15th Edition
ISBN: 9781269935678
Author: Nivaldo J. Tro
Publisher: Pearson Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 72E
An electron in a hydrogen atom relaxes to the ∖[n = 4∖] level, emitting light of 114 THz. What is the value of n for the level in which the electron originated?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
Ch. 3 - Which wavelength of light has the highest...Ch. 3 - Which kind of electromagnetic radiation contains...Ch. 3 - How much energy (in J ) is contained in 1.00 mole...Ch. 3 - Light from three different lasers (A, B, and C),...Ch. 3 - Calculate the wavelength of an electron traveling...Ch. 3 - Which set of three quantum numbers does not...Ch. 3 - Calculate the wavelength of light emitted when an...Ch. 3 - Which electron transition produces light of the...Ch. 3 - How much time (in seconds) does it take light to...Ch. 3 - Which figure represents a d orbital? None of the...
Ch. 3 - Why is the quantum-mechanical model of the atom...Ch. 3 - What is light? How fast does it travel in a...Ch. 3 - Define the wavelength and amplitude of a wave.Ch. 3 - Define the frequency of electromagnetic radiation....Ch. 3 - What determines the color of light? Describe the...Ch. 3 - What determines the color of a colored object?...Ch. 3 - Give an approximate range of wavelengths for each...Ch. 3 - Explain the wave behavior known as interference....Ch. 3 - Explain the wave behavior known as diffraction....Ch. 3 - Describe the photoelectric effect. How did...Ch. 3 - How did the photoelectric effect lead Einstein to...Ch. 3 - What is a photon? How is the energy of a photon...Ch. 3 - What is an emission spectrum? How does an emission...Ch. 3 - Describe the Bohr model for the atom. How did the...Ch. 3 - Explain electron diffraction.Ch. 3 - What is the de Broglie wavelength of an electron?...Ch. 3 - What are complementary properties? How does...Ch. 3 - Explain Heisenberg’s uncertainty principle. What...Ch. 3 - What is a trajectory? What kind of information do...Ch. 3 - Why does the uncertainty principle make it...Ch. 3 - Newton’s laws of motion are deterministic. Explain...Ch. 3 - An electron behaves in ways that are at least...Ch. 3 - What is a probability distribution map?Ch. 3 - For each solution to the Schrödinger equation,...Ch. 3 - What is a quantum-mechanical orbital?Ch. 3 - What is the Schrödinger equation? What is a wave...Ch. 3 - What are the possible values of the principal...Ch. 3 - What are the possible values of the angular...Ch. 3 - What are the possible values of the magnetic...Ch. 3 - Explain the difference between a plot showing the...Ch. 3 - Sketch the general shapes of the s, p, and d...Ch. 3 - List the four different sublevels. Given that only...Ch. 3 - Why are atoms usually portrayed as spheres when...Ch. 3 - The distance from the sun to Earth is 1.496108 km....Ch. 3 - The nearest star to our sun is Proxima Centauri,...Ch. 3 - List these types of electromagnetic radiation in...Ch. 3 - List these types of electromagnetic radiation in...Ch. 3 - Calculate the frequency of each wavelength of...Ch. 3 - Calculate the wavelength of each frequency of...Ch. 3 - Calculate the energy of a photon of...Ch. 3 - Calculate the energy of a photon of...Ch. 3 - A laser pulse with wavelength 532 nm contains 3.85...Ch. 3 - A heat lamp produces 32.8 watts of power at a...Ch. 3 - Determine the energy of 1 mol of photons for each...Ch. 3 - How much energy is contained in 1 mol of each?...Ch. 3 - Sketch the interference pattern that results from...Ch. 3 - What happens to the interference pattern described...Ch. 3 - The resolution limit of a microscope is roughly...Ch. 3 - The smallest atoms can themselves exhibit...Ch. 3 - What is the de Broglie wavelength of an electron...Ch. 3 - A proton in a linear accelerator has a de Broglie...Ch. 3 - Prob. 53ECh. 3 - A 0.22-caliber handgun fires a 27-g bullet at a...Ch. 3 - An electron has an uncertainty in its position of...Ch. 3 - An electron traveling at [1.35 \times {10^5}\] m/s...Ch. 3 - Which electron is, on average, closer to the...Ch. 3 - Which electron is, on average, further from the...Ch. 3 - What are the possible values of I for each given...Ch. 3 - What are the possible values of m1 for each given...Ch. 3 - Which set of quantum numbers cannot occur together...Ch. 3 - Which combinations of n and I represent real...Ch. 3 - Prob. 63ECh. 3 - Sketch the 3d orbitals. How do the 4d orbitals...Ch. 3 - An electron in a hydrogen atom is excited with...Ch. 3 - Determine whether each transition in the hydrogen...Ch. 3 - According to the quantum-mechanical model for the...Ch. 3 - According to the quantum-mechanical model for the...Ch. 3 - Calculate the wavelength of the light emitted when...Ch. 3 - Calculate the frequency of the light emitted when...Ch. 3 - Prob. 71ECh. 3 - An electron in a hydrogen atom relaxes to the [n =...Ch. 3 - Ultraviolet radiation and radiation of shorter...Ch. 3 - The human eye contains a molecule called...Ch. 3 - An argon ion laser puts out 5.0 W of continuous...Ch. 3 - A green leaf has a surface area of 2.50 cm2. If...Ch. 3 - Prob. 77ECh. 3 - An X-ray photon of wavelength 0.989 nm strikes a...Ch. 3 - Prob. 79ECh. 3 - The energy required to ionize sodium is 496...Ch. 3 - Prob. 81ECh. 3 - Suppose that, in an alternate universe, the...Ch. 3 - Prob. 83ECh. 3 - Prob. 84ECh. 3 - The binding energy of electrons in a metal is 193...Ch. 3 - In order for a thermonuclear fusion reaction of...Ch. 3 - Prob. 87ECh. 3 - Prob. 88ECh. 3 - The iodine molecule can be photodissociated...Ch. 3 - A sample of naphthalene in hexane contains 5.00104...Ch. 3 - Prob. 91ECh. 3 - Prob. 92ECh. 3 - Prob. 93ECh. 3 - The energy of a vibrating molecule is quantized...Ch. 3 - The wave functions for the 1s and 2s orbitals are...Ch. 3 - Before quantum mechanics was developed, Johannes...Ch. 3 - Find the velocity of an electron emitted by a...Ch. 3 - Water is exposed to infrared radiation of...Ch. 3 - Prob. 99ECh. 3 - A metal with a threshold frequency of 6.711014s1...Ch. 3 - Find the longest wavelength of a wave that can...Ch. 3 - The amount of heat to melt ice is 0.333 kJ/g. Find...Ch. 3 - Explain the difference between the Bohr model for...Ch. 3 - The light emitted from one of the following...Ch. 3 - Determine whether an interference pattern is...Ch. 3 - Which transition in the hydrogen atom results in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- A hydrogen atom in the ground stale absorbs a photon whose wavelength is 95.0 nm. The resulting excited atom then emits a photon of 1282 nm. What are the regions of the electromagnetic spectrum for the radiations involved in these transitions? What is the principal quantum number of the final state resulting from the emission from the excited atom?arrow_forwardA particular transition of the rubidium atom emits light whose frequency is 3.84 1014 Hz. (Hz is the abbreviation for hertz, which is equivalent to the unit/s, or s1.) Is this light in the visible spectrum? If so, what is the color of the light? (See Figure 7.5.)arrow_forwardAs the weapons officer aboard the Srarship Chemistry, it is your duty to configure a photon torpedo to remove an electron from the outer hull of an enemy vessel. You know that the work function (the binding energy of the electron) of the hull of the enemy ship is 7.52 1019 J. a. What wavelength does your photon torpedo need to be to eject an electron? b. You find an extra photon torpedo with a wavelength of 259 nm and fire it at the enemy vessel. Does this photon torpedo do any damage to the ship (does it eject an electron)? c. If the hull of the enemy vessel is made of the element with an electron configura tion of [Ar]4s13d10, what metal is this?arrow_forward
- This laser emits green light with a wavelength of 533 nm. (a) What is the energy, in joules, of one photon of light at this wavelength? (b) If a particular laser produces 1.00 watt (W) of power (1 W = 1 J/s), how many photons are produced each second by the laser?arrow_forward6.17 The laser in most supermarket barcode scanners operates at a wavelength of 632.8 nm. What is the energy of a single photon emitted by such a laser? What is the energy of one mole of these photons?arrow_forwardSelenium atoms have a particular transition that emits light of frequency 1.53 1015 Hz. (Hz is the abbreviation for hertz, which is equivalent to the unit/s, or s1.) Is this light in the visible spectrum? If so, what is the color of the light? (See Figure 7.5.)arrow_forward
- The lasers used in supermarket scanners emit red light at a wavelength of 633 nm. Compact disc players use lasers that emit light (that is not visible) at 840 nm. Which photonsthose emitted by supermarket scanners or compact disc (CD) playerscontain more energy per photon? Supermarket scanners CD players They both contain the same amount of energy per photon.arrow_forwardInvestigating Energy Levels Consider the hypothetical atom X that has one electron like the H atom but has different energy levels. The energies of an electron in an X atom are described by the equation E=RHn3 where RH is the same as for hydrogen (2.179 1018 J). Answer the following questions, without calculating energy values. a How would the ground-state energy levels of X and H compare? b Would the energy of an electron in the n = 2 level of H be higher or lower than that of an electron in the n = 2 level of X? Explain your answer. c How do the spacings of the energy levels of X and H compare? d Which would involve the emission of a higher frequency of light, the transition of an electron in an H atom from the n = 5 to the n = 3 level or a similar transition in an X atom? e Which atom, X or H, would require more energy to completely remove its electron? f A photon corresponding to a particular frequency of blue light produces a transition from the n = 2 to the n = 5 level of a hydrogen atom. Could this photon produce the same transition (n = 12 to n = 5) in an atom of X? Explain.arrow_forwardWhat is the wavelength of a proton traveling at a speed of 6.21 km/s? What would be the region of the spectrum for electromagnetic radiation of this wavelength?arrow_forward
- A ruby laser puts out a pulse of red light at a wavelength of 694 nm. (The ruby laser is described in the essay on p 226.) If a pulse delivers 1.05 105 watts of power for 280 s, how many photons are there in this pulse? (1 watt = 1 J/s.)arrow_forwardAn atom emits yellow light when an electron makes the transition from the n = 5 to the n = 1 level. In separate experiments, suppose you bombarded the n = 1 level of this atom with red light, yellow light (obtained from the previous emission), and blue light. In which experiment or experiments would the electron be promoted to the n = 5 level?arrow_forward6.93 A mercury atom is initially in its lowest possible (or ground state) energy level. The atom absorbs a photon with a wavelength of 185 nm and then emits a photon with a frequency of 4.9241014HZ . At the end of this series of transitions, the atom will still be in an energy level above the ground state. Draw an energy-level diagram for this process and find the energy of this resulting excited state, assuming that we assign a value of E = 0 to the ground state. (This choice of E = 0 is not the usual convention, but it will simplify the calculations you need to do here.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
The Bohr Model of the atom and Atomic Emission Spectra: Atomic Structure tutorial | Crash Chemistry; Author: Crash Chemistry Academy;https://www.youtube.com/watch?v=apuWi_Fbtys;License: Standard YouTube License, CC-BY