Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 6P
Phobos, one of the moons of Mars, is about 25 km in diameter and orbits about 6000 km above the surface of the planet. What is the angular diameter of Phobos as seen from Mars? (Hint: See Reasoning with Numbers 3-1.)
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Imagine you grew up on Mars, whose semi-major axis is 1.5 AU. In observing the planets over your lifetime from the Martian surface, what is the largest angular separation you would see between the Earth and the Sun? Take the orbits of the Earth and Mars to be circular.
The Mars Robotic Lander for which we are making these calculations is designed to return samples of rock from Mars after a long time of collecting samples, exploring the area around the landing site, and making chemical analyses of rocks and dust in the landing area. One synodic period is required for Earth to be in the same place relative to mars as when it landed.
Calculate the synodic period (in years) using the following formula:
1/Psyn = (1/PEarth) - (1/PMars)
where PEarth is the sidereal period of the Earth (1 year) and PMars is the sidereal period of Mars.
If 3/4 of a Martian year was spent collecting samples and exploring the terrain around the landing site, calculate how long the Mars Robotic Lander expedition took!
How long, deep, and wide would a terrestrial chasm have to be to have the
same proportions relative to the Earth that Valles Marineris has to Mars?
Chapter 3 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 3 - What is the difference between the daily and...Ch. 3 - If Earth did not rotate, could you still define...Ch. 3 - What would the seasons be like if Earth were...Ch. 3 - Why are the seasons reversed in the Southern...Ch. 3 - Prob. 5RQCh. 3 - Do the phases of the Moon look the same from every...Ch. 3 - What phase would Earth be in if you were on the...Ch. 3 - Why have most people seen a total lunar eclipse,...Ch. 3 - Why isn’t there an eclipse at every new moon and...Ch. 3 - Why is the Moon red during a total lunar eclipse?
Ch. 3 - Why should the eccentricity of Earth’s orbit make...Ch. 3 - Prob. 12RQCh. 3 - Prob. 13RQCh. 3 - How Do We know? Why must a scientific argument...Ch. 3 - You are packing for a vacation on a planet...Ch. 3 - You happen to visit the Moon when some people on...Ch. 3 - Given that Earth is about 4.6 billion (4.6109)...Ch. 3 - Identify the phases of the Moon if on March 20 the...Ch. 3 - Identify the phases of the Moon if at sunset in...Ch. 3 - Prob. 4PCh. 3 - Draw a diagram showing Earth, the Moon, and...Ch. 3 - Phobos, one of the moons of Mars, is about 25 km...Ch. 3 - A total eclipse of the Sun was visible from Canada...Ch. 3 - Prob. 8PCh. 3 - The cartoon in Figure UN 3-4 shows a crescent...Ch. 3 - The photo in Figure UN 3-5 shows the annular...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If you visited the surface of Pluto and found Charon as a full moon at your zenith, where would you be located on the surface of Pluto?arrow_forwardA Sense of Proportion: Mercury averages only 0.39 AU from the Sun, Venus 0.72 AU and Mars 1.52 AU. If you built a model solar system and represent the average distance from the Sun to Earth as 10 inches, how far would you place Mercury, Venus and Mars from the Sun?arrow_forwardUse the small-angle formula to calculate the angular diameter (in arc minutes) of Mars (d = 6.79 ✕ 103 km) as seen from Earth if Mars were at the location of the Sun (D = 1.5 ✕ 108 km).arrow_forward
- The value we have just calculated is the combined masses of Jupiter and Callisto! Their mass is in units of the Sun's Mass (MS) - we can convert this to units which are more familiar to us like kilograms by multiplying this answer by the scale factor (1.99x1030 kg/1 MS): (MJupiter + MCallisto) = ( MS) (1.99x1030 kg/1 Solar Mass) = _______x_10___ kg (I have already written the x 10 so you are reminded to write the exponenet of 10 in the scientific notation expression of your answer). Since you know from looking at pictures of Jupiter with its Galilean Satellites (look in your book at a picture if you have not already), that Callisto is much smaller than Jupiter - in fact it is less than 0.001 of Jupiter's size or mass, so the number we have just calculated for (MJupiter + MCallisto) is almost the same as MJupiter . How much more massive is Jupiter than the Earth? (The mass of Earth is about 5.98 x 1024 kg)arrow_forwardthe area in between Mars' and Jupiter's orbit to be ~1.6e18 km2. Since there are roughly 750,000 asteroids, how much area (in km2) is available for one asteroid? Use this calculation to argue whether you are likely (or not) to hit an asteroid while flying through the asteroid belt. (Hint: To answer the first part of the question, find the area per asteroid)arrow_forwardThe region between Mars and Jupiter, where asteroids lie, extends from 1.52-5.20 AU from the Sun. To find the distance between Mars and this asteroid as a fraction of the total distance between Mars and Jupiter, we simply take their ratios: dma f = dmj f =arrow_forward
- In the previous lab, we calculated the area in between Mars' and Jupiter's orbit to be ~1.6e18 km2. Since there are roughly 750,000 asteroids, how much area (in km2) is available for one asteroid? Use this calculation to argue whether you are likely (or not) to hit an asteroid while flying through the asteroid belt. (Hint: To answer the first part of the question, find the area per asteroid)arrow_forwardAt an average opposition, the Earth and Mars are separated by 0.52 AU. Suppose an astronomer observes Mars at opposition and that seeing blurs the images to a resolution of 1.0 seconds of arc. What is the smallest surface feature the astronomer would be able to resolve on Mars? How does this size compare with the diameter of Mars?arrow_forwardThe chart shows the length of time for each planet, in Earth days, to make one complete revolution around the Sun. Orbital Period of Planets iY the Solar System Orbital Period (Earth days) 88 225 365 687 4333 10 759 30 685 60 189 Planet Mercury Venus Earth Mars Jupiter Satum Uranus Neptune Source: NASA Use the data table above to compare the length of a year on Mars and Neptune. (HS-ESS1-4) a. One year on Neptune is almost 100 times longer than a year on Mars. b. One year on these two planets is nearly equal. c. One year on Mars is almost 100 times longer than a year on Neptune. d. One year these two planets is roughly equal to a year on Earth. Use the data table above to determine which of the following statements is TRUE. (HS-ESS1-4) a. There is no relationship between a planet's distance from the Sun and its length of year. b. The closer a planet is to the Sun, the longer the planet's year. c. One year on all planets is about 365 days long. d. The farther away a planet is from the…arrow_forward
- I would like you to compare the size of some of the largest moons of the solar system to their host planets. Using diameters of 12,700 km, and 140,000 km, 116,000 km for Earth, Jupiter, and Saturn respectively, please provide the ratios of the following moons to their host planets (you can use Table 12.1 from the book to get the diameters of the moons): Luna (Earth's moon), Io, Callisto, Ganymede, Europa, and Titan. After collecting those ratios, please tell me one thing that you notice that stands out about those results.arrow_forwardEnceladus is a moon of Saturn. What unique feature does it possess? which is the correct answer? Cryovolcanism, where water erupts instead of silicate rock A dense system of rings An atmosphere thicker than Earth's Internal heating due to radioactivity Has an orbit inside Saturn's ringsarrow_forwardCalculate the velocity of Venus as it orbits the Sun. (Hint: Use the formula for circular velocity, Eq. 5-1a.) (Note: Necessary data are given in the Celestial Profiles for the Sun in Chapter 8 and Venus in this chapter.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY