Horizons: Exploring the Universe (MindTap Course List)
14th Edition
ISBN: 9781305960961
Author: Michael A. Seeds, Dana Backman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 1DQ
You are packing for a vacation on a planet orbiting another star that is much like the Sun. Why might you want some information about the planets orbit size and axis tilt to know what to pack?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
You are making a scale model to visualize the relative sizes of the planets in our solar system. The scale of the model is: 1 cm = 2000 km. The radius of Saturn is 60,000 km. At what radius will Saturn appear on your scale model?
The planetarium is making a scale model of the solar system. If they use a basketball to represent the sun. How far from the basketball should the earth be?
At present there are 8 planets in the solar system. In the early models, there were only 6 planets. What is the reason behind this?
Describe a model of the modern solar system in terms of the number of planets, their arrangement and the model’s center.
Chapter 3 Solutions
Horizons: Exploring the Universe (MindTap Course List)
Ch. 3 - What is the difference between the daily and...Ch. 3 - If Earth did not rotate, could you still define...Ch. 3 - What would the seasons be like if Earth were...Ch. 3 - Why are the seasons reversed in the Southern...Ch. 3 - Prob. 5RQCh. 3 - Do the phases of the Moon look the same from every...Ch. 3 - What phase would Earth be in if you were on the...Ch. 3 - Why have most people seen a total lunar eclipse,...Ch. 3 - Why isn’t there an eclipse at every new moon and...Ch. 3 - Why is the Moon red during a total lunar eclipse?
Ch. 3 - Why should the eccentricity of Earth’s orbit make...Ch. 3 - Prob. 12RQCh. 3 - Prob. 13RQCh. 3 - How Do We know? Why must a scientific argument...Ch. 3 - You are packing for a vacation on a planet...Ch. 3 - You happen to visit the Moon when some people on...Ch. 3 - Given that Earth is about 4.6 billion (4.6109)...Ch. 3 - Identify the phases of the Moon if on March 20 the...Ch. 3 - Identify the phases of the Moon if at sunset in...Ch. 3 - Prob. 4PCh. 3 - Draw a diagram showing Earth, the Moon, and...Ch. 3 - Phobos, one of the moons of Mars, is about 25 km...Ch. 3 - A total eclipse of the Sun was visible from Canada...Ch. 3 - Prob. 8PCh. 3 - The cartoon in Figure UN 3-4 shows a crescent...Ch. 3 - The photo in Figure UN 3-5 shows the annular...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Seasons are a result of the inclination of a planet’s axial tilt being inclined from the normal of the planet’s orbital plane. For example, Earth has an axis tilt of 23.4° (Appendix F). Using information about just the inclination alone, which planets might you expect to have seasonal cycles similar to Earth, although different in duration because orbital periods around the Sun are different?arrow_forwardAccording to the solar nebula theory, why is there a common direction of revolution and rotation for most objects in the Solar System?arrow_forwardWhy are all large celestial bodies (stars, planets, larger moons) very nearly spherical in shape? a because of the centrifugal force from the body's rotation b because of tidal forces c because gravity tries to pull every part of the celestial body to the center d because of the pressure from the heat in the body's corearrow_forward
- Why is it difficult to make a model of the Solar System that is correct with reference to both planetary diameter and distance?arrow_forwardI have submitted this question 4 times and the responses have all been wrong. Please put your best person on this. I have tried 19.9923, 20.6, and 20.69 for part 1 and those are all wrong and I have tried 14.1122, 14.80, 8.41781, and 14.87 for part 2 and those are all wrong too. Please help! I'm wasting questions!arrow_forwardA pendulum makes 10 swings every 15 seconds on Earth. You take the same pendulum to the surface of a different planet and you notice that the pendulum makes 15 swings in 15 seconds. Which of the following could be true? (Select two right answers) 1. The mass of the planet is larger than Earth 2. The mass of the planet is smaller than Earth 3. The radius of the planet is larger than Earth 4. The radius of the planet is smaller than Eartharrow_forward
- i legacynv.schoology.com/common-assessment-dlelivery/start/48958977 Kuiper Belt Jupiter Mercury Venus Urahus Saturn Mars Farth · Ceres Neptune Jupiter Pluto inner solar system outer solar system not to scale Is this model to scale regarding the sizes of the planets and distances between them? Why or why not? O Yes. That is why the outer planets are shown in a separate box. O No. The distances in the solar system are too great to produce a model accurate to distance that still has inner planets visible. O No. The outer planet distances are drawn to scale, but the inner planets need to be drawn farther from the sun to be visible. 1 4arrow_forwardThere is one part to this question. I need to know the m/s. Thank you!arrow_forwardWhat would be the angular diameter (in arc seconds) of a planet with diameter 8.5 x 105 km and orbital distance from it's star of 175 x 108 km as seen from a planet with. orbital distance from the same star of 70 x 107 km as seen from their closest approach?arrow_forward
- EAn astronaut arrives on the planet Oceania and climbs to the top of a cliff overlooking the sea. The astronaut's eye is 100 m above the sea level and he observes that the horizon in all directions appears to be at angle of 5 mrad below the local horizontal. What is the radius of the planet Oceania at sea level? How far away is the horizon from the astronaut? 6000 km and 50 km 3600 km and 20 km 2000 km and 40 km 8000 km and 40 kmarrow_forwardThe International Space Station is about 90 meters across and about 380 kilometers away. One night it appears to be the same angular size as Jupiter. Jupiter is 143,000 km in size. Use S = r x a to figure out how far away Jupiter is in AU. Note 1 AU = 1.5 x 108 kmarrow_forwardPlease help with the answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY