
Electronics Fundamentals: Circuits, Devices & Applications
8th Edition
ISBN: 9780135072950
Author: Thomas L. Floyd, David Buchla
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 5TSC
To determine
The cause for the circuit with the given value of the ammeter and voltmeter.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A3 m long cantilever ABC is built-in at A, partially supported at B, 2 m from A,
with a force of 10 kN and carries a vertical load of 20 kN at C. A uniformly distributed
bad of 5 kN/m is also applied between A and B. Determine
(a) the values of the vertical reaction and built-in moment at A and
(b) the deflection of the free end C of the cantilever,
Develop an expression for the slope of the beam at any position and hence plot a slope diagram.
E = 208GN / (m ^ 2) and 1 = 24 * 10 ^ - 6 * m ^ 4
7. Consider the following feedback system with a proportional controller.
K
G(s)
The plant transfer function is given by
G(s) =
10
(s + 2)(s + 10)
You want the system to have a damping ratio of 0.3 for unit step response. What is the
value of K you need to choose to achieve the desired damping ratio? For that value of
K, find the steady-state error for ramp input and settling time for step input.
Hint: Sketch the root locus and find the point in the root locus that intersects with z =
0.3 line.
Create the PLC ladder logic diagram
for the logic gate circuit displayed in
Figure 7-35. The pilot light red (PLTR)
output section has three inputs: PBR,
PBG, and SW. Pushbutton red (PBR)
and pushbutton green (PBG) are inputs
to an XOR logic gate. The output of the
XOR logic gate and the inverted switch
SW) are inputs to a two-input AND
logic gate. These inputs generate the
pilot light red (PLTR) output.
The two-input AND logic gate output
is also fed into a two-input NAND logic
PBR
PBG
SW
TSW
PLTR
Figure 7-35. Logic gate circuit for Example 7-3.
PLTW
Goodheart-Willcox Publisher
gate. The temperature switch (TSW) is the other input to the NAND logic gate. The output generated from
the NAND logic gate is labeled pilot light white (PLTW).
Chapter 3 Solutions
Electronics Fundamentals: Circuits, Devices & Applications
Ch. 3 - If the total resistance of a circuit increases,...Ch. 3 - Ohm’s law for finding resistance is R=1/V.Ch. 3 - When milliamps and kilohms are multiplied...Ch. 3 - If a 10k resistor is connected to a 10 V source,...Ch. 3 - Prob. 5TFQCh. 3 - Prob. 6TFQCh. 3 - Prob. 7TFQCh. 3 - Prob. 8TFQCh. 3 - A power supply that has a negative output voltage...Ch. 3 - Prob. 10TFQ
Ch. 3 - Ohm’s law states that current equals voltage...Ch. 3 - When the voltage across a resistor is doubled, the...Ch. 3 - Prob. 3STCh. 3 - Prob. 4STCh. 3 - Prob. 5STCh. 3 - Prob. 6STCh. 3 - Prob. 7STCh. 3 - Prob. 8STCh. 3 - Prob. 9STCh. 3 - Prob. 10STCh. 3 - A 2.2k resistor dissipates 0.5 W. The current is...Ch. 3 - Prob. 12STCh. 3 - Prob. 13STCh. 3 - Prob. 14STCh. 3 - Prob. 15STCh. 3 - Determine the cause for each set of symptoms....Ch. 3 - Determine the cause for each set of symptoms....Ch. 3 - Prob. 3TSCCh. 3 - Determine the cause for each set of symptoms....Ch. 3 - Prob. 5TSCCh. 3 - The current in a circuit is 1 A. Determine what...Ch. 3 - Prob. 2PCh. 3 - The current in a circuit is 10 mA. What will the...Ch. 3 - Determine the current in each case. V=5V,R=1.0...Ch. 3 - Determine the curren in each case. V=9V,R=2.7k...Ch. 3 - A 10 resistor is connected across a 12 V battery....Ch. 3 - A resistor is connected across the terminals of a...Ch. 3 - A 5-band resistor is connected across a 12 V...Ch. 3 - If the voltage in Problem 8 is doubled, will a 0.5...Ch. 3 - Calculate the voltage for each value of IandR....Ch. 3 - Calculate the voltage for each value of l and R....Ch. 3 - Three amperes of current are measured through a 27...Ch. 3 - Assign a voltage value to each source in the...Ch. 3 - Calculate the resistance for each value of V and...Ch. 3 - Calculate R for each set of V and I values....Ch. 3 - Six volts are applied across a resistor. A current...Ch. 3 - Choose the correct value of resistance to get the...Ch. 3 - A flashlight is operated from 3.2 V and has a...Ch. 3 - The flashlight in Problem 18 uses 26 J in 10 s....Ch. 3 - What is the power when energy is used at the rate...Ch. 3 - What is the powe in watts when 7500 J of energy...Ch. 3 - Convert the following to kilowatts:...Ch. 3 - Convert the following to megawatts: 1,000.000W...Ch. 3 - Convert the following to milliwatts:...Ch. 3 - Convert the following to microwatts:...Ch. 3 - Convert the following to watts:...Ch. 3 - Prove that the unit for power (the watt) is...Ch. 3 - Show that there are 3.6106 joules in a...Ch. 3 - If a resistor has 5.5 V across it and 3 mA through...Ch. 3 - An electric heater works on 115 V and draws 3 A of...Ch. 3 - What is the power when there are 500 mA of current...Ch. 3 - Calculate the power dissipated by a 10k resistor...Ch. 3 - If there are 60 V across a 620 resistor,what is...Ch. 3 - A 56 resistor is connected across the terminals of...Ch. 3 - If a resistor is to carry 2 A of current and...Ch. 3 - Convert 5106 watts used for 1 minute to kWh.Ch. 3 - Convert 6700 watts used for 1 second to kWh.Ch. 3 - How many kilowatt-hours do 50 W used for 12 h...Ch. 3 - Assume that an alkaline D-cell battery can...Ch. 3 - What is the total energy in joules that is...Ch. 3 - A 6.8k resistor has burned out in a circuit. You...Ch. 3 - A certain type of power resistor comes in the...Ch. 3 - For each circuit in Figure 3-31, assign the proper...Ch. 3 - A 50 load consumes 1 W of power. What is the...Ch. 3 - A battery can provide an average of 1.5 A of...Ch. 3 - How much average current can be drawn from an 80...Ch. 3 - If a battery is rated at 650mAh, how much average...Ch. 3 - If the input power is 500mW and the output power...Ch. 3 - To operate at 85% efficiency, how much output...Ch. 3 - In the light circuit of Figure 3-32, identify the...Ch. 3 - Assume you have a 32-light string and one of the...Ch. 3 - Prob. 52PCh. 3 - The filament of a light bulb in the circuit of...Ch. 3 - A certain electrical device has an unknown...Ch. 3 - A variable voltage source is connected to the...Ch. 3 - In a certain circuit, Vs=1Vandl=5mA. Determine the...Ch. 3 - Figure 3-35 is a graph of current versus voltage...Ch. 3 - You are measuring the current in a circuit tha is...Ch. 3 - If you wish to increase the amount of current in a...Ch. 3 - A 6 V source is connected to a 100 resistor by two...Ch. 3 - If a 300 W bulb is allowed to burn continuously...Ch. 3 - At the end of a 31 day period, your utility bill...Ch. 3 - A certain type of power resistor comes in the...Ch. 3 - A 12 V source is connected across a 10 resistor...Ch. 3 - The rheostat in Figure 3-36 is used to control the...Ch. 3 - Open file P03-66; files are found at...Ch. 3 - Open file P03-67. Determine whether or not the...Ch. 3 - Open file P03-68. Determine whether or not the...Ch. 3 - Open file P03-69. Determine whether or not the...Ch. 3 - Open file P03-70. Determine whether or not the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Imaginary Axis (seconds) 1 6. Root locus for a closed-loop system with L(s) = is shown below. s(s+4)(s+6) 15 10- 0.89 0.95 0.988 0.988 -10 0.95 -15 -25 0.89 20 Root Locus 0.81 0.7 0.56 0.38 0.2 5 10 15 System: sys Gain: 239 Pole: -0.00417 +4.89 Damping: 0.000854 Overshoot (%): 99.7 Frequency (rad/s): 4.89 System: sys Gain: 16.9 Pole: -1.57 Damping: 1 Overshoot (%): 0 Frequency (rad/s): 1.57 0.81 0.7 0.56 0.38 0.2 -20 -15 -10 -5 5 10 Real Axis (seconds) From the values shown in the figure, compute the following. a) Range of K for which the closed-loop system is stable. b) Range of K for which the closed-loop step response will not have any overshoot. Note that when all poles are real, the step response has no overshoot. c) Smallest possible peak time of the system. Note that peak time is the smallest when wa is the largest for the dominant pole. d) Smallest possible settling time of the system. Note that peak time is the smallest when σ is the largest for the dominant pole.arrow_forwardFor a band-rejection filter, the response drops below this half power point at two locations as visualised in Figure 7, we need to find these frequencies. Let's call the lower frequency-3dB point as fr and the higher frequency -3dB point fH. We can then find out the bandwidth as f=fHfL, as illustrated in Figure 7. 0dB Af -3 dB Figure 7. Band reject filter response diagram Considering your AC simulation frequency response and referring to Figure 7, measure the following from your AC simulation. 1% accuracy: (a) Upper-3db Frequency (fH) = Hz (b) Lower-3db Frequency (fL) = Hz (c) Bandwidth (Aƒ) = Hz (d) Quality Factor (Q) =arrow_forwardP 4.4-21 Determine the values of the node voltages V1, V2, and v3 for the circuit shown in Figure P 4.4-21. 29 ww 12 V +51 Aia ww 22. +21 ΖΩ www ΖΩ w +371 ①1 1 Aarrow_forward
- 1. What is the theoretical attenuation of the output voltage at the resonant frequency? Answer to within 1%, or enter 0, or infinity (as “inf”) Attenuation =arrow_forwardWhat is the settling time for your output signal (BRF_OUT)? For this question, We define the settling time as the period of time it has taken for the output to settle into a steady state - ie when your oscillation first decays (aka reduces) to less than approximately 1/20 (5%) of the initial value. (a) Settling time = 22 μs Your last answer was interpreted as follows: Incorrect answer. Check 22 222 What is the peak to peak output voltage (BRF_OUT pp) at the steady state condition? You may need to use the zoom function to perform this calculation. Select a time point that is two times the settling time you answered in the question above. Answer to within 10% accuracy. (a) BRF_OUT pp= mVpp As you may have noticed, the output voltage amplitude is a tiny fraction of the input voltage, i.e. it has been significantly attenuated. Calculate the attenuation (decibels = dB) in the output signal as compared to the input based on the formula given below. Answer to within 1% accuracy.…arrow_forwardmy previous answers for a,b,d were wrong a = 1050 b = 950 d=9.99 c was the only correct value i got previously c = 100hz is correctarrow_forward
- V₁(t) ww ZRI ZLI ZL2 ZTH Zci VTH Zc21 Figure 8. Circuit diagram showing calculation approach for VTH and Z TH we want to create a blackbox for the red region, we want to use the same input signal conditions as previously the design of your interference ector circuit: Sine wave with a 1 Vpp, with a frequency of 100 kHz (interference) Square wave with 2.4Vpp, with a frequency of 10 kHz (signal) member an AC Thevenin equivalent is only valid at one frequency. We have chosen to calculate the Thevenin equivalent circuit (and therefore the ackbox) at the interference frequency (i.e. 100 kHz), and the signal frequency (i.e. 10 kHz) as these are the key frequencies to analyse. Your boss is assured you that the waveform converter module has been pre-optimised to the DAB Receiver if you use the recommended circuit topology.arrow_forwardVs(t) + v(t) + vi(t) ZR ZL Figure 1: Second order RLC circuit Zc + ve(t) You are requested to design the circuit shown in Figure 1. The circuit is assumed to be operating at its resonant frequency when it is fed by a sinusoidal voltage source Vs (t) = 2sin(le6t). To help design your circuit you have been given the value of inductive reactance ZL = j1000. Assume that the amplitude of the current at resonance is Is (t) = 2 mA. Based on this information, answer the following to help design your circuit. Use cartesian notation for your answers, where required.arrow_forwardWhat is the attenuation at the resonant frequency? You should use the LTSpice cursors for your measurement. Answer to within 1% accuracy, or enter 0, or infinity (as "inf") (a) Attenuation (dB) = dB Check You may have noticed that it was significantly easier to use frequency-domain "AC" simulation to measure the attenuation, compared to the steps we performed in the last few questions. (i.e. via a time-domain "transient" simulation). AC analysis allows us to observe and quantify large scale positive or negative changes in a signal of interest across a wide range of different frequencies. From the response you will notice that only frequencies that are relatively close to 100 kHz have been attenuated. This is the result of the Band-reject filter you have designed, and shows the 'rejection' (aka attenuation) of any frequencies that lie in a given band. The obvious follow-up question is how do we define this band? We use a quantity known as the bandwidth. A commonly used measurement for…arrow_forward
- V₁(t) ww ZRI ZLI ZL2 ZTH Zci VTH Zc21 Figure 8. Circuit diagram showing calculation approach for VTH and Z TH we want to create a blackbox for the red region, we want to use the same input signal conditions as previously the design of your interference ector circuit: Sine wave with a 1 Vpp, with a frequency of 100 kHz (interference) Square wave with 2.4Vpp, with a frequency of 10 kHz (signal) member an AC Thevenin equivalent is only valid at one frequency. We have chosen to calculate the Thevenin equivalent circuit (and therefore the ackbox) at the interference frequency (i.e. 100 kHz), and the signal frequency (i.e. 10 kHz) as these are the key frequencies to analyse. Your boss is assured you that the waveform converter module has been pre-optimised to the DAB Receiver if you use the recommended circuit topology.arrow_forwardVs(t) + v(t) + vi(t) ZR ZL Figure 1: Second order RLC circuit Zc + ve(t) You are requested to design the circuit shown in Figure 1. The circuit is assumed to be operating at its resonant frequency when it is fed by a sinusoidal voltage source Vs (t) = 2sin(le6t). To help design your circuit you have been given the value of inductive reactance ZL = j1000. Assume that the amplitude of the current at resonance is Is (t) = 2 mA. Based on this information, answer the following to help design your circuit. Use cartesian notation for your answers, where required.arrow_forwardFor a band-rejection filter, the response drops below this half power point at two locations as visualised in Figure 7, we need to find these frequencies. Let's call the lower frequency-3dB point as fr and the higher frequency -3dB point fH. We can then find out the bandwidth as f=fHfL, as illustrated in Figure 7. 0dB Af -3 dB Figure 7. Band reject filter response diagram Considering your AC simulation frequency response and referring to Figure 7, measure the following from your AC simulation. 1% accuracy: (a) Upper-3db Frequency (fH) = Hz (b) Lower-3db Frequency (fL) = Hz (c) Bandwidth (Aƒ) = Hz (d) Quality Factor (Q) =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning

Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
What is an electric furnace and how does it work?; Author: Fire & Ice Heating and Air Conditioning Inc;https://www.youtube.com/watch?v=wjAWecPGi0M;License: Standard Youtube License