![Electronics Fundamentals: Circuits, Devices & Applications](https://www.bartleby.com/isbn_cover_images/9780135072950/9780135072950_largeCoverImage.gif)
Electronics Fundamentals: Circuits, Devices & Applications
8th Edition
ISBN: 9780135072950
Author: Thomas L. Floyd, David Buchla
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 19P
The flashlight in Problem 18 uses 26 J in 10 s. What is the power in watts?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
find the answers for this prelab
Q2:
(30 Marks)
Design a DC/DC converter that produce output waveforms that shown in figures below from a
fixed DC source of 20 volts.
Vo (Volt)
14.1
IL (Amp)
13.9
2.25
1.75
† (msec)
Output voltage
0.18
0.2
t (msec)
L
0.214 0.22
Output current
6. Build the circuit shown in Figure 2 below in PSpice. Note that the power supply V1 is a
VSIN power supply in the SOURCE library. Vcc is a VDC supply found in the SOURCE
library. Model this circuit using the Time Domain (Transient) Analysis Type with a Run To
Time of 2 ms.
A. Paste your output graph showing the voltage at the base terminal, collector terminal
and at the load.
B. What is the voltage gain of the circuit? (Compare the voltage amplitude at the base
terminal input (across Rb2) to that at the collector terminal.
C. What happens to the output voltage at the collector terminal if the value of Rb1 is
reduced by a factor of 10 (to 14.7 kn)? Simulate this situation and explain the result.
D. What happens to the output voltage at the collector terminal if the value of Rb1 is
increased by a factor of 3 (to 441 k)? Simulate this situation and explain the result.
Rb1
RC
147k
1k
C2
C1
Q1
Vcc
1u
VOFF = 0
Q2N3904
10Vdc
VAMPL = 0.1V1
1u
FREQ = 2k
R_load
Rb2
Re
AC = 0
250
40k
20
Figure…
Chapter 3 Solutions
Electronics Fundamentals: Circuits, Devices & Applications
Ch. 3 - If the total resistance of a circuit increases,...Ch. 3 - Ohm’s law for finding resistance is R=1/V.Ch. 3 - When milliamps and kilohms are multiplied...Ch. 3 - If a 10k resistor is connected to a 10 V source,...Ch. 3 - Prob. 5TFQCh. 3 - Prob. 6TFQCh. 3 - Prob. 7TFQCh. 3 - Prob. 8TFQCh. 3 - A power supply that has a negative output voltage...Ch. 3 - Prob. 10TFQ
Ch. 3 - Ohm’s law states that current equals voltage...Ch. 3 - When the voltage across a resistor is doubled, the...Ch. 3 - Prob. 3STCh. 3 - Prob. 4STCh. 3 - Prob. 5STCh. 3 - Prob. 6STCh. 3 - Prob. 7STCh. 3 - Prob. 8STCh. 3 - Prob. 9STCh. 3 - Prob. 10STCh. 3 - A 2.2k resistor dissipates 0.5 W. The current is...Ch. 3 - Prob. 12STCh. 3 - Prob. 13STCh. 3 - Prob. 14STCh. 3 - Prob. 15STCh. 3 - Determine the cause for each set of symptoms....Ch. 3 - Determine the cause for each set of symptoms....Ch. 3 - Prob. 3TSCCh. 3 - Determine the cause for each set of symptoms....Ch. 3 - Prob. 5TSCCh. 3 - The current in a circuit is 1 A. Determine what...Ch. 3 - Prob. 2PCh. 3 - The current in a circuit is 10 mA. What will the...Ch. 3 - Determine the current in each case. V=5V,R=1.0...Ch. 3 - Determine the curren in each case. V=9V,R=2.7k...Ch. 3 - A 10 resistor is connected across a 12 V battery....Ch. 3 - A resistor is connected across the terminals of a...Ch. 3 - A 5-band resistor is connected across a 12 V...Ch. 3 - If the voltage in Problem 8 is doubled, will a 0.5...Ch. 3 - Calculate the voltage for each value of IandR....Ch. 3 - Calculate the voltage for each value of l and R....Ch. 3 - Three amperes of current are measured through a 27...Ch. 3 - Assign a voltage value to each source in the...Ch. 3 - Calculate the resistance for each value of V and...Ch. 3 - Calculate R for each set of V and I values....Ch. 3 - Six volts are applied across a resistor. A current...Ch. 3 - Choose the correct value of resistance to get the...Ch. 3 - A flashlight is operated from 3.2 V and has a...Ch. 3 - The flashlight in Problem 18 uses 26 J in 10 s....Ch. 3 - What is the power when energy is used at the rate...Ch. 3 - What is the powe in watts when 7500 J of energy...Ch. 3 - Convert the following to kilowatts:...Ch. 3 - Convert the following to megawatts: 1,000.000W...Ch. 3 - Convert the following to milliwatts:...Ch. 3 - Convert the following to microwatts:...Ch. 3 - Convert the following to watts:...Ch. 3 - Prove that the unit for power (the watt) is...Ch. 3 - Show that there are 3.6106 joules in a...Ch. 3 - If a resistor has 5.5 V across it and 3 mA through...Ch. 3 - An electric heater works on 115 V and draws 3 A of...Ch. 3 - What is the power when there are 500 mA of current...Ch. 3 - Calculate the power dissipated by a 10k resistor...Ch. 3 - If there are 60 V across a 620 resistor,what is...Ch. 3 - A 56 resistor is connected across the terminals of...Ch. 3 - If a resistor is to carry 2 A of current and...Ch. 3 - Convert 5106 watts used for 1 minute to kWh.Ch. 3 - Convert 6700 watts used for 1 second to kWh.Ch. 3 - How many kilowatt-hours do 50 W used for 12 h...Ch. 3 - Assume that an alkaline D-cell battery can...Ch. 3 - What is the total energy in joules that is...Ch. 3 - A 6.8k resistor has burned out in a circuit. You...Ch. 3 - A certain type of power resistor comes in the...Ch. 3 - For each circuit in Figure 3-31, assign the proper...Ch. 3 - A 50 load consumes 1 W of power. What is the...Ch. 3 - A battery can provide an average of 1.5 A of...Ch. 3 - How much average current can be drawn from an 80...Ch. 3 - If a battery is rated at 650mAh, how much average...Ch. 3 - If the input power is 500mW and the output power...Ch. 3 - To operate at 85% efficiency, how much output...Ch. 3 - In the light circuit of Figure 3-32, identify the...Ch. 3 - Assume you have a 32-light string and one of the...Ch. 3 - Prob. 52PCh. 3 - The filament of a light bulb in the circuit of...Ch. 3 - A certain electrical device has an unknown...Ch. 3 - A variable voltage source is connected to the...Ch. 3 - In a certain circuit, Vs=1Vandl=5mA. Determine the...Ch. 3 - Figure 3-35 is a graph of current versus voltage...Ch. 3 - You are measuring the current in a circuit tha is...Ch. 3 - If you wish to increase the amount of current in a...Ch. 3 - A 6 V source is connected to a 100 resistor by two...Ch. 3 - If a 300 W bulb is allowed to burn continuously...Ch. 3 - At the end of a 31 day period, your utility bill...Ch. 3 - A certain type of power resistor comes in the...Ch. 3 - A 12 V source is connected across a 10 resistor...Ch. 3 - The rheostat in Figure 3-36 is used to control the...Ch. 3 - Open file P03-66; files are found at...Ch. 3 - Open file P03-67. Determine whether or not the...Ch. 3 - Open file P03-68. Determine whether or not the...Ch. 3 - Open file P03-69. Determine whether or not the...Ch. 3 - Open file P03-70. Determine whether or not the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The input reactance of 1/2 dipole with radius of 1/30 is given as shown in figure below, Assuming the wire of dipole is conductor 5.6*107 S/m, determine at f=1 GHz the a-Loss resistance, b- Radiation efficiency c-Reflection efficiency when the antenna is connected to T.L shown in the figure. Rr Ro= 50 2 1/4 RL -j100 [In(l/a) - 1.5] tan(ẞl)arrow_forward6) For each independent source in this circuit calculate the amount of power being supplied or the amount of power being absorbed + 6V www +3V- www 20 ми ми 352 0.5A + 3Varrow_forward2) A circuit is given as shown (a) Find and label circuit nodes. (b) Determine V, V₂, V₂, I₂ and I. + V₂ 452 m I2 6Ω www 52 t + V + 4A 노동 102 ww 1202 60 www I₂arrow_forward
- A Darlington Pair consists of two transistors with the first BJT driving the base terminal of the second transistor as shown in the picture provided. What does the curve trace for a Darlington Pair of Bipolar Junction Transistors look like?arrow_forwardProvide Pen and paper solution please not using AIarrow_forward5) If the current source supplies 448 watts, then what 15 the value of resistance R? ми R ↑ YA 62 ww 120 } ww 6_02 { wwarrow_forward
- What is the equivalent resistance of this circuit between terminals A and B ? m 1852 A 7_A 122 도 www 50 ти B ww 36 Ω 201 www www 30√arrow_forward3) A circuit is given as shown. (a) Find and label the circuit nodes. (6) Determine V2, V2, I₂, I₂ and Is © For each circuit element determine how much power it Supplies 15 absorbs. m 20 + 20 www 13 + 20 Z9V H 56 +1 LOV 1/2 1 4A + 3_22 3.2 ми + V₂ I 1arrow_forwardIn this experiment, we are going to use a 2N3904 BJT. Examine the data sheet for this device carefully. In particular, make a note of the current gain (identified by hFE). 1. Obtain the curve trace for a "Darlington Pair" of Bipolar Junction Transistors. A Darlington Pair consists of two transistors with the first BJT driving the base terminal of the second transistor as shown in Figure 1 below. A. Set up the primary sweep voltages for V1 the same as shown in the lecture notes (see the Darlington pair IV curve). B. Set up the secondary sweep currents for 11 to be an order of magnitude smaller than for the single BJT. In the Sweep Type box choose linear and enter the following 3 values: Start Value: 0, End Value: 8u and Increment: 1u (see lecture notes). C. Describe the primary differences you observe between the single BJT Curve Trace and that of the Darlington Pair. Discuss what might cause each difference. Q1 11 Q2 V1 Q2N3904 Figure 1. A Darlington Pair of 2N3904 transistors in a…arrow_forward
- 2. Using the IV plots shown in Fig. 3 (and found in the reintroduction to PSpice) design a BJT biasing circuit that results in the following parameters: VCE = 2 Vand ig = 40 μA. We also require the power supply to be fixed at 5 Volts (this is where the load line intercepts the iB =ic = 0 line). You may use the circuit shown in Example 1. Note that all resistor values in Example 1 must be recalculated. Your solution for the base to ground and base to collector resistors may not be unique.arrow_forwardA circuit is given as shown. (a) Find and label the circuit nodes. (6) Determine I, I₁, I2 and V₂ I₂ +1 I 12V ww 22 2 ти + 보통 162 - ти 4 52 12 50 602 I 1 Mwarrow_forwarda) A silicon wafer is uniformly doped p-type with NA=10¹³/cm³. At T=0K, what are the equilibrium hole and electron concentrations?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningElectricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399128/9781337399128_smallCoverImage.gif)
Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Kirchhoff's Rules of Electrical Circuits; Author: Flipping Physics;https://www.youtube.com/watch?v=d0O-KUKP4nM;License: Standard YouTube License, CC-BY