BASIC BIOMECHANICS
8th Edition
ISBN: 9781259913877
Author: Hall
Publisher: RENT MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 5AP
Use a trigonometric solution to find the magnitude of the resultant of the following coplanar forces: 60 N at 90°, 80 N at 120°, and 100 N at 270°. (Answer: 49.57 N)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Rotate the ball horizontally on an 80 cm long non-stretchable cord with angular
velocity of 3 s^(-1). After ten seconds of clockwise rotation, the cord breaks. At what
speed and in what direction does the ball fly, if it was faced north at time t = Os?
Where and after how much time does the ball land on the ground that is 1 m below
the plaine in which we rotate the string? {Solution: v= (0.37 m/s,2.37 m/s); d=1.07 m,
t=0.447 s.) }
An airplane flying directly eastward at a constant speed travels 293 km in 2.0 h.
(a) what is the average velocity of the plane?
(b) what is the instantaneous velocity?
A scientist was investigating if differences in the frictional work performed on a model car can change
depending on its mass (in grams) and whether the car moves up or down an inclined plane. They decided to
measure the amount of frictional force experienced by the model car and the distance it traveled in meters.
The scientists were able to evaluate the frictional work using the following data.
Mass (g)
Distance (m) Force
Work Done by Friction (J)
car going up the incline
100
39
0.063
2.457
car going down the incline 70
39
0.2309 ?
It is known that the relationship between force and distance determines the work done by friction (W+).
W₁ = fd
Wf work done by friction
f = force
d = distance
Question:
How much work done by friction was exerted on the car as it moved down the inclined plane?
You may use a calculator.
1
2.457
9.005
11.46
16.16
PREVIOUS
FINISH
Chapter 3 Solutions
BASIC BIOMECHANICS
Ch. 3 - Prob. 1IPCh. 3 - How much force must be applied to a 0.5-kg hockey...Ch. 3 - A rugby player is contacted simultaneously by...Ch. 3 - Prob. 4IPCh. 3 - Draw the horizontal and vertical components of the...Ch. 3 - A gymnastics floor mat weighing 220 N has...Ch. 3 - What is the volume of a milk crate with sides of...Ch. 3 - Prob. 8IPCh. 3 - If the contents of the crate described in Problem...Ch. 3 - Two children sit on opposite sides of a playground...
Ch. 3 - Prob. 1APCh. 3 - Gravitational force on planet X is 40% of that...Ch. 3 - A football player is contacted by two tacklers...Ch. 3 - A 75-kg skydiver in free fall is subjected to a...Ch. 3 - Use a trigonometric solution to find the magnitude...Ch. 3 - Prob. 6APCh. 3 - In the nucleus pulposus of an intervertebral disc,...Ch. 3 - Prob. 9APCh. 3 - Two muscles develop tension simultaneously on...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, bioengineering and related others by exploring similar questions and additional content below.Similar questions
- From the equation of a lineweaver-burke plot, calculate Km and Vmax. Show your work and include units. The equation is y=393.4x +8.4337arrow_forwardGive an interpretation for the following graph:arrow_forwardThe above computation of gravitational force between two celestial objects (like Earth and the moon) is based on which equation? (V1)(P1) = (V2)(P2) F = GM1M2/d2 (years)2 = (A.U.)3 vm = ½ (vo + vf) S = vot + ½ (a) t2arrow_forward
- please provide an example to solve for Velocity using the Michaelis-Menten Equation ?arrow_forwardWhat would be the best labels for both x and y axisarrow_forwardThe “mean-speed theorem” for finding average velocity under constant acceleration, proposed by the Oxford Calculators, and demonstrated geometrically by Nicole Oresme, is expressed algebraically as: density = weight/volume (m1)(v1) = (m2)(v2) (vm) = 1/2 (v0 + vf) s = (v0)(t) + 1/2 (a)(t2) velocity = distance/timearrow_forward
- You have measured the following data for enzyme X. Substrate Vo concentration (micromolar (mM) Isec) 0.05 10 0.1 60 0.5 175 1 250 350 490 10 492 20 494 50 499 100 498 200 498arrow_forwardThe “mean-speed theorem” for calculating average velocity under constant acceleration, developed by Thomas Bradwardine and the Mertonian Calculators at Oxford University, is expressed algebraically as: density = weight/volume (m1)(v1) = (m2)(v2) C. (vm) = 1/2 (v0 + vf) s = (v0)(t) + 1/2 (a)(t2) velocity = distance/timearrow_forwardIn terms of mass and acceleration, what is the equation for force?arrow_forward
- Based on the acceleration in the above ball rolling down an inclined plane (with vo = 0 meters per second), how far would it have traveled along the inclined plane in the first six seconds of rolling? 9 meters 16 meters 25 meters 36 meters 49 metersarrow_forwardSolution A is 20 degrees celsius, Solution B is 80 degrees celsius (both are the same kind of solution). The goal is to make a 50 degree celsius solution; How much of solution A do you need (starting with 100g of solution B)? (cp=4.184 J/g C)arrow_forwardThe above computation of momentum (the term used by Isaac Newton), or “impetus” (the term used by Jean Buridan), is based on which of the following equations? (mass1)(velocity1) = (mass2)(velocity2) F = GM1M2/d2 (years)2 = (A.U.)3 vm = ½ (vo + vf)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles Of Radiographic Imaging: An Art And A ...Health & NutritionISBN:9781337711067Author:Richard R. Carlton, Arlene M. Adler, Vesna BalacPublisher:Cengage Learning
Principles Of Radiographic Imaging: An Art And A ...
Health & Nutrition
ISBN:9781337711067
Author:Richard R. Carlton, Arlene M. Adler, Vesna Balac
Publisher:Cengage Learning
Chapter 7 - Human Movement Science; Author: Dr. Jeff Williams;https://www.youtube.com/watch?v=LlqElkn4PA4;License: Standard youtube license