BASIC BIOMECHANICS
8th Edition
ISBN: 9781259913877
Author: Hall
Publisher: RENT MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3IP
A rugby player is contacted simultaneously by three opponents who exert forces of the magnitudes and directions shown in the diagram at right. Using a graphic solution, show the magnitude and direction of the resultant force.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. a) Label the system provided below, including the reference frame, moment arms and vector forces
with the information provided.
Internal moment arm = 4cm +0.04m
External moment arm relative
to the segment weight = 25cm 0.25m
External moment arm relative
to the load weight = 45cm 40.45m
Segment weight = 50 N
Load weight = 100 N
Lower leg segment angle relative
to horizontal plane = 45°
Quadriceps tendon angle = 45°
Axis of
rotation
MF
SW
LW
2b) Using the figure in 2a., calculate the external torque of the system relative to the normal
component of segment and load weights listed above.
2c) Calculate the amount of both the tangential component of the muscle force and the muscle force
itself required to keep this system in a state of static equilibrium.
According to the free-body diagram, which forces act on both teams and rope before motion begins and in which directions?
Define synergistic effect
Chapter 3 Solutions
BASIC BIOMECHANICS
Ch. 3 - Prob. 1IPCh. 3 - How much force must be applied to a 0.5-kg hockey...Ch. 3 - A rugby player is contacted simultaneously by...Ch. 3 - Prob. 4IPCh. 3 - Draw the horizontal and vertical components of the...Ch. 3 - A gymnastics floor mat weighing 220 N has...Ch. 3 - What is the volume of a milk crate with sides of...Ch. 3 - Prob. 8IPCh. 3 - If the contents of the crate described in Problem...Ch. 3 - Two children sit on opposite sides of a playground...
Ch. 3 - Prob. 1APCh. 3 - Gravitational force on planet X is 40% of that...Ch. 3 - A football player is contacted by two tacklers...Ch. 3 - A 75-kg skydiver in free fall is subjected to a...Ch. 3 - Use a trigonometric solution to find the magnitude...Ch. 3 - Prob. 6APCh. 3 - In the nucleus pulposus of an intervertebral disc,...Ch. 3 - Prob. 9APCh. 3 - Two muscles develop tension simultaneously on...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, bioengineering and related others by exploring similar questions and additional content below.Similar questions
- For each of the activities shown, describe the movement using the proper terminology. Describe the movement in stages, using: the axis the plane the terms of movementarrow_forwardForces and Motion Vocab: include definitions and formulas/ ways to calculate Distance- Displacement- Speed- Velocity- Acceleration-arrow_forwardWith the shoulder flexed at 30°, the moment arm of the deltoid muscle is 2.0 cm. Solve for the force exerted by the deltoid muscle at the glenohumeral joint give the following assumptions: The deltoid is the only active muscle at the glenohumeral joint The weight of the humerus is 48 N. The center of gravity of the humerus is located 30 cm from the shoulder center of rotation STATIC EQUILIBRIUM EQUATIONS CONSIDERING ONLY THE DELTOID MUSCLE Fo MA = 18 Cn COR B=55". 0-30° RaF 30 cm FG = 24 Narrow_forward
- All exercises below are examples of closed kinetic chain exercises except... Push up Overhead press Squat Bridgearrow_forwardWhen Galileo Galilei rolled a ball down an inclined plane, it traveled 1.0 meters in the first second, and a total of 4.0 meters in the first two seconds. What was its acceleration on this inclined plane? 2.0 meters per second2 3.0 meters per second2 4.0 meters per second2 5.0 meters per second2 6.0 meters per second2arrow_forwardIf an individual does training with only the right knee extensor muscles, it is common to see increase in strength in knee extension force for the right leg and an increase in strength in the knee extension force of the left leg (although the increase in force is typically not to the same extent as the force increase in the right leg) a.) True b.) Falsearrow_forward
- The adjacent diagram displays the joint reaction force between the acetabulum and femoral head for the right leg during single leg stance. Also shown are the abductor muscle force (AMF), the weight of the body above the level of the stance hip (W) and their corresponding moment arms with respect to the joint centre (D and D1). If the right leg weighs 1/6 of total body weight, the ratio of D1 to D is 2.4, and AMF is angled at 30 degrees relative to the vertical, calculate the: Abductor muscle force (2 marks). Hip joint reaction force (2 marks). Express both answers as multiples of total body weightarrow_forwardTotal compressive knee forces range between O 1-2 %BW O 2-4 %BW 3-5 %BW 0.5-1.5 %BWarrow_forwardWrite a brief explanation of how, by calculating forces and torques in a physical system suchas the human body, it is possible to deduce the best way to lift an object without injuring yourself.Include at least one relevant mathematical formula in your presentationarrow_forward
- Discuss Hydrostatic methodarrow_forward< The three main forces that act on the patella are shown on the diagram of the knee joint below. These forces are the quadriceps muscle force (FQ), the patella ligament force (FPL), and the patellofemoral joint reaction force (FPF). The angles a and ẞ are with respect to a line that is perpendicular to FPF. Assuming a = 15°, ẞ = 20°, and FQ = 3725 N, use equations for static equilibrium to calculate (a) FPL, and (b) FPF. (Hint: To solve this problem consider using a coordinate system that is aligned with the principal axes of the patella instead of the usual vertical and horizontal axes). (c) Many people assume FQ and FPL are always equal in magnitude but this is only true under certain circumstances. Under what conditions are FQ and FPL equal in magnitude? Fo FPF FP B GriffithUNIVERSITY Queensland Australiaarrow_forwardTwo lifter's knees are of interest at a specific moment in their lifts. In both lifts, the knee extensor torque is 100 Nm, requiring quadriceps tendon/patella ligament forces of 1000 N (about 220 Ibs). Despite equivalent knee torques and quadriceps forces, patellofemoral joint forces are higher on the knees of lifter A. Briefly explain why. Edit View Insert Format Tools Table 12pt v Paragraph v BIUAarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Basic BiomechanicsBioengineeringISBN:9780073522760Author:Susan J HallPublisher:McGraw-Hill Education
Basic Biomechanics
Bioengineering
ISBN:9780073522760
Author:Susan J Hall
Publisher:McGraw-Hill Education
Chapter 7 - Human Movement Science; Author: Dr. Jeff Williams;https://www.youtube.com/watch?v=LlqElkn4PA4;License: Standard youtube license