(a)
Interpretation:
Most acidic proton should be identified in the given compounds.
Concept introduction:
Acidic strength of the molecule depends on the stability of the Conjugate ion.
- Conjugate ion is the ion, which is produced by de protonating the most acidic proton from the molecule.
This conjugate ion stability effected by four factors called ARIO (Atom Resonance Inductive effect Orbital) concept. If the conjugate anion is more stabilized, the acid considered as strong acid and the anion is weak base.
- If negative charge located atom is larger enough to hold the negative charge, the anion attains stability.
- If the anion is resonance stabilized, the corresponding acid is more acidic.
- If withdrawing inductive effect is present near to the negative charge located position, acidity increases.
Hybridized orbital stabilizes the negative charge better than other hybridizations.
To identify: the most acidic proton in the given molecule.
(b)
Interpretation:
Most acidic proton should be identified in the given compounds.
Concept introduction:
Acidic strength of the molecule depends on the stability of the Conjugate ion.
- Conjugate ion is the ion, which is produced by de protonating the most acidic proton from the molecule.
This conjugate ion stability effected by four factors called ARIO (Atom Resonance Inductive effect Orbital) concept. If the conjugate anion is more stabilized, the acid considered as strong acid and the anion is weak base.
- If negative charge located atom is larger enough to hold the negative charge, the anion attains stability.
- If the anion is resonance stabilized, the corresponding acid is more acidic.
- If withdrawing inductive effect is present near to the negative charge located position, acidity increases.
Hybridized orbital stabilizes the negative charge better than other hybridizations.
To identify: the most acidic proton in the given molecule.
(c)
Interpretation:
Most acidic proton should be identified in the given compounds.
Concept introduction:
Acidic strength of the molecule depends on the stability of the Conjugate ion.
- Conjugate ion is the ion, which is produced by de protonating the most acidic proton from the molecule.
This conjugate ion stability effected by four factors called ARIO (Atom Resonance Inductive effect Orbital) concept. If the conjugate anion is more stabilized, the acid considered as strong acid and the anion is weak base.
- If negative charge located atom is larger enough to hold the negative charge, the anion attains stability.
- If the anion is resonance stabilized, the corresponding acid is more acidic.
- If withdrawing inductive effect is present near to the negative charge located position, acidity increases.
Hybridized orbital stabilizes the negative charge better than other hybridizations.
To identify: the most acidic proton in the given molecule.
(d)
Interpretation:
Most acidic proton should be identified in the given compounds.
Concept introduction:
Acidic strength of the molecule depends on the stability of the Conjugate ion.
- Conjugate ion is the ion, which is produced by de protonating the most acidic proton from the molecule.
This conjugate ion stability effected by four factors called ARIO (Atom Resonance Inductive effect Orbital) concept. If the conjugate anion is more stabilized, the acid considered as strong acid and the anion is weak base.
- If negative charge located atom is larger enough to hold the negative charge, the anion attains stability.
- If the anion is resonance stabilized, the corresponding acid is more acidic.
- If withdrawing inductive effect is present near to the negative charge located position, acidity increases.
Hybridized orbital stabilizes the negative charge better than other hybridizations.
To identify: the most acidic proton in the given molecule.
(e)
Interpretation:
Most acidic proton should be identified in the given compounds.
Concept introduction:
Acidic strength of the molecule depends on the stability of the Conjugate ion.
- Conjugate ion is the ion, which is produced by de protonating the most acidic proton from the molecule.
This conjugate ion stability effected by four factors called ARIO (Atom Resonance Inductive effect Orbital) concept. If the conjugate anion is more stabilized, the acid considered as strong acid and the anion is weak base.
- If negative charge located atom is larger enough to hold the negative charge, the anion attains stability.
- If the anion is resonance stabilized, the corresponding acid is more acidic.
- If withdrawing inductive effect is present near to the negative charge located position, acidity increases.
Hybridized orbital stabilizes the negative charge better than other hybridizations.
To identify: the most acidic proton in the given molecule.
(f)
Interpretation:
Most acidic proton should be identified in the given compounds.
Concept introduction:
Acidic strength of the molecule depends on the stability of the Conjugate ion.
- Conjugate ion is the ion, which is produced by de protonating the most acidic proton from the molecule.
This conjugate ion stability effected by four factors called ARIO (Atom Resonance Inductive effect Orbital) concept. If the conjugate anion is more stabilized, the acid considered as strong acid and the anion is weak base.
- If negative charge located atom is larger enough to hold the negative charge, the anion attains stability.
- If the anion is resonance stabilized, the corresponding acid is more acidic.
- If withdrawing inductive effect is present near to the negative charge located position, acidity increases.
Hybridized orbital stabilizes the negative charge better than other hybridizations.
To identify: the most acidic proton in the given molecule.
(g)
Interpretation:
Most acidic proton should be identified in the given compounds.
Concept introduction:
Acidic strength of the molecule depends on the stability of the Conjugate ion.
- Conjugate ion is the ion, which is produced by de protonating the most acidic proton from the molecule.
This conjugate ion stability effected by four factors called ARIO (Atom Resonance Inductive effect Orbital) concept. If the conjugate anion is more stabilized, the acid considered as strong acid and the anion is weak base.
- If negative charge located atom is larger enough to hold the negative charge, the anion attains stability.
- If the anion is resonance stabilized, the corresponding acid is more acidic.
- If withdrawing inductive effect is present near to the negative charge located position, acidity increases.
Hybridized orbital stabilizes the negative charge better than other hybridizations.
To identify: the most acidic proton in the given molecule.
(h)
Interpretation:
Most acidic proton should be identified in the given compounds.
Concept introduction:
Acidic strength of the molecule depends on the stability of the Conjugate ion.
- Conjugate ion is the ion, which is produced by de protonating the most acidic proton from the molecule.
This conjugate ion stability effected by four factors called ARIO (Atom Resonance Inductive effect Orbital) concept. If the conjugate anion is more stabilized, the acid considered as strong acid and the anion is weak base.
- If negative charge located atom is larger enough to hold the negative charge, the anion attains stability.
- If the anion is resonance stabilized, the corresponding acid is more acidic.
- If withdrawing inductive effect is present near to the negative charge located position, acidity increases.
Hybridized orbital stabilizes the negative charge better than other hybridizations.
To identify: the most acidic proton in the given molecule.

Want to see the full answer?
Check out a sample textbook solution
Chapter 3 Solutions
ORGANIC CHEMISTRY,SOLNS...-ETEXT+BOX
- Hi, I need your help with the drawing, please. I have attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forwardHi, I need your help i dont know which one to draw please. I’ve attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forward5. Write the formation reaction of the following complex compounds from the following reactants: 6. AgNO₃ + K₂CrO₂ + NH₄OH → 7. HgNO₃ + excess KI → 8. Al(NO₃)₃ + excess NaOH →arrow_forward
- Indicate whether the product formed in the reaction exhibits tautomerism. If so, draw the structure of the tautomers. CO₂C2H5 + CH3-NH-NH,arrow_forwardDraw the major product of this reaction N-(cyclohex-1-en-1-yl)-1-(pyrrolidino) reacts with CH2=CHCHO, heat, H3O+arrow_forwardDraw the starting material that would be needed to make this product through an intramolecular Dieckmann reactionarrow_forward
- Draw the major product of this reaction. Nitropropane reacts + pent-3-en-2-one reacts with NaOCH2CH3, CH3CHOHarrow_forwardIndicate whether the product formed in the reaction exhibits tautomerism. If so, draw the structure of the tautomers. OC2H5 + CoHs-NH-NH,arrow_forwardExplain how substitutions at the 5-position of barbituric acid increase the compound's lipophilicity.arrow_forward
- Explain how substitutions at the 5-position of phenobarbital increase the compound's lipophilicity.arrow_forwardName an interesting derivative of barbituric acid, describing its structure.arrow_forwardBriefly describe the synthesis mechanism of barbituric acid from the condensation of urea with a β-diketone.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





