(a)
Interpretation:
The cations & anions derived from Barium & Bromine should be combined in order to get an electrically neutralized ionic compound.
Concept introduction:
An ionic compound forms by the mutual attraction of 2 oppositely charged ions called cation & anion. Cationis derived from Barium (Ba), while anion is derived from Bromine (Br).
Answer to Problem 48P
BaBr2
Explanation of Solution
Cations are derived from metals. A cation is formed by removing 1 or few electrons from a metal atom. As electrons are negatively charged, the removal of electrons (negative charges) gives a positive charge to the rest of the atom.
Oppositely anions are derived from non-metal elements. An anion is formed by gaining 1 or few electrons. As electrons are negatively charged, the gaining of electrons (negative charges) gives a negative charge to the rest of the atom.
So, in the given two elements metal is Barium (Ba). So cation is derived from Ba. The only cation derived from Ba is Ba2+. The cation is derived by removing 2 electrons from Ba.
Ba → Ba2+ + 2e (electrons are indicated as e)
Bromine is the non-metal which is forming anion, Br- / Bromide, by gaining 1 electron to a Br atom.
Br + e → Br-
From this cation & anion an ionic compound is formed. Usually a simple ionic compound is electrically neutral. So cation & anion combined in a way to neutralize opposite charges.
As Ba2+ is having +2 positive charge, 2 Br- ions should becombined.
So the ionic compound form from Barium & Bromine is BaBr2.
(b)
Interpretation:
The cations & anions derived from Aluminum&Sulfur should be combined in order to get an electrically neutralized ionic compound.
Concept introduction:
An ionic compound forms by the mutual attraction of 2 oppositely charged ions called cation & anion. Cation is derived from Aluminum (Al), while anion is derived from Sulfur(S).
Answer to Problem 48P
Al2S3
Explanation of Solution
Cations are derived from metals. A cation is formed by removing 1 or few electrons from a metal atom. As electrons are negatively charged, the removal of electrons (negative charges) gives a positive charge to the rest of the atom.
Oppositely anions are derived from non-metal elements. An anion is formed by gaining 1 or few electrons. As electrons are negatively charged, the gaining of electrons (negative charges) gives a negative charge to the rest of the atom.
In the given two elements metal is Aluminum (Al). So cation is derived from Al. The only cation derived from Al is Al3+. The cation is derived by removing 3 electrons from Al.
Al → Al3++ 3e (electrons are indicated as e)
Sulfur is the non-metal which is forming anion, S2-/Sulfide, by gaining 2 electrons.
S + 2e → S2-
From this cation & anion an ionic compound is formed. Usually a simple ionic compound is electrically neutral. So cation & anion combined in a way to neutralize opposite charges.
Al3+ has a +3 charge. S2-/ Sulfide ion has a -2 charge. So S2-: Al3+ should be combined in a ratio of 3: 2, to maintain the charge neutrality. This is the first ratio that the both values are integers.
The above ratio is proven correct by the following simple calculation to balance charges.
(Equals zero because the ionic compound should have no net charge)
So in the ionic compound form from Aluminum & Sulfur there should be 2 Al3+s & 3 S2- s. So the compound is Al2S3
(c)
Interpretation:
The cations & anions derived from Manganese&Chlorine should be combined in order to get an electrically neutralized ionic compound.
Concept introduction:
An ionic compound forms by the mutual attraction of 2 oppositely charged ions called cation & anion. Cation is derived from Manganese (Mn), while anion is derived from Chlorine (Cl).
Answer to Problem 48P
MnCl2
Explanation of Solution
Cations are derived from metals. A cation is formed by removing 1 or few electrons from a metal atom. As electrons are negatively charged, the removal of electrons (negative charges) gives a positive charge to the rest of the atom.
Oppositely anions are derived from non-metal elements. An anion is formed by gaining 1 or few electrons. As electrons are negatively charged, the gaining of electrons (negative charges) gives a negative charge to the rest of the atom.
So in the given two elements metal is Manganese (Mn). So cation is derived from Mn. Manganese has the ability to form several cations like Mn2+, Mn3+&Mn4+. Out of them the most stable cation is Mn2+. This cation is derived by removing 2 electrons from Mn.
Mn → Mn2+ + 2e (electrons are indicated as e)
Chlorine is the non-metal which is forming anion, Cl-/Chloride, by gaining 1 electron to a Cl atom.
Cl + e → Cl-
From this cation & anion an ionic compound is formed. Usually a simple ionic compound is electrically neutral. So cation & anion combined in a way to neutralize opposite charges.
As Mn2+ is having +2 positive charge, 2 Cl- ions should becombined.
So, the ionic compound form from Manganese&Chlorine is MnCl2.
(d)
Interpretation:
The cations & anions derived from Zinc&Sulfur should be combined in order to get an electrically neutralized ionic compound.
Concept introduction:
An ionic compound forms by the mutual attraction of 2 oppositely charged ions called cation & anion. Cation is derived from Zinc (Zn), while anion is derived from Sulfur (S).
Answer to Problem 48P
ZnS
Explanation of Solution
Cations are derived from metals. A cation is formed by removing 1 or few electrons from a metal atom. As electrons are negatively charged, the removal of electrons (negative charges) gives a positive charge to the rest of the atom.
Oppositely anions are derived from non-metal elements. An anion is formed by gaining 1 or few electrons. As electrons are negatively charged, the gaining of electrons (negative charges) gives a negative charge to the rest of the atom.
So in the given two elements metal is Zinc (Zn). So cation is derived from Zn. The most common & stable cation derived from Zn is Zn2+. The cation is derived by removing 2 electrons from Zn.
Zn → Zn2+ + 2e (electrons are indicated as e)
Sulfur is the non-metal which is forming anion, S2- / Sulfide, by gaining 2 electrons.
S + 2e → S2-
From this cation & anion an ionic compound is formed. Usually a simple ionic compound is electrically neutral. So cation & anion combined in a way to neutralize opposite charges.
As both Zn2+& S2-is having +2 & -2 charge, one cation & one anion are combined to form the Compound ZnS.
So, the ionic compound form from Zinc&Sulfur is ZnS.
(e)
Interpretation:
The cations & anions derived from Magnesium&Fluorine should be combined in order to get an electrically neutralized ionic compound.
Concept introduction:
An ionic compound forms by the mutual attraction of 2 oppositely charged ions called cation & anion. Cation is derived from Magnesium (Mg), while anion is derived from Fluorine (F).
Answer to Problem 48P
MgF2
Explanation of Solution
Cations are derived from metals. A cation is formed by removing 1 or few electrons from a metal atom. As electrons are negatively charged, the removal of electrons (negative charges) gives a positive charge to the rest of the atom.
Oppositely anions are derived from non-metal elements. An anion is formed by gaining 1 or few electrons. As electrons are negatively charged, the gaining of electrons (negative charges) gives a negative charge to the rest of the atom.
So in the given two elements metal is Magnesium (Mg). So cation is derived from Mg. The only cation derived from Mg is Mg2+. The cation is derived by removing 2 electrons from Mg.
Mg → Mg2+ + 2e (electrons are indicated as e)
Fluorine is the non-metal, which is forming anion, F- / Fluoride, by gaining 1 electron to a F atom.
F + e → F-
From this cation & anion an ionic compound is formed. Usually a simple ionic compound is electrically neutral. So cation & anion combined in a way to neutralize opposite charges.
As Mg2+ is having +2 positive charge, 2 F- ions should becombined.
So the ionic compound form from Magnesium&Fluorine is MgF2.
Want to see more full solutions like this?
Chapter 3 Solutions
GENERAL,ORGANIC, & BIOLOGICAL CHEM-ACCES
- AN IR spectrum, a 13 CMR spectrum, and a 1 HMR spectrum were obtained for an unknown structure with a molecular formula of C9H10. Draw the structure of this compound.arrow_forwardAN IR spectrum, a 13 CMR spectrum, and a 1 HMR spectrum were obtained for an unknown structure with a molecular formula of C9H10. Draw the structure of this compound.arrow_forward(a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3¯)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forward
- Q8: Draw the resonance structures for the following molecule. Show the curved arrows (how you derive each resonance structure). Circle the major resonance contributor.arrow_forwardQ4: Draw the Lewis structures for the cyanate ion (OCN) and the fulminate ion (CNO). Draw all possible resonance structures for each. Determine which form for each is the major resonance contributor.arrow_forwardIn the following molecule, indicate the hybridization and shape of the indicated atoms. CH3 N CH3 HÖ: H3C CI: ::arrow_forward
- Q3: Draw the Lewis structures for nitromethane (CH3NO2) and methyl nitrite (CH3ONO). Draw at least two resonance forms for each. Determine which form for each is the major resonance contributor.arrow_forwardQ1: Draw a valid Lewis structures for the following molecules. Include appropriate charges and lone pair electrons. If there is more than one Lewis structure available, draw the best structure. NH3 Sulfate Boron tetrahydride. C3H8 (linear isomer) OCN NO3 CH3CN SO2Cl2 CH3OH2*arrow_forwardQ2: Draw all applicable resonance forms for the acetate ion CH3COO. Clearly show all lone pairs, charges, and arrow formalism.arrow_forward
- Please correct answer and don't used hand raitingarrow_forward9. The following reaction, which proceeds via the SN1/E1 mechanisms, gives three alkene products (A, B, C) as well as an ether (D). (a) Show how each product arises mechanistically. (b) For the alkenes, determine the major product and justify your answer. (c) What clues in the reaction as shown suggest that this reaction does not go by the SN2/E2 mechanism route? (CH3)2CH-CH-CH3 CH3OH 1 Bl CH3OH ⑧· (CH3)2 CH-CH=CH2 heat H ⑥③ (CH3)2 C = C = CH3 © СнЗ-С-Снаснз сна (CH 3 ) 2 C H G H CH 3 оснзarrow_forwardPlease Don't used hand raitingarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning