University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 42P
An airplane, starting from rest, move down the runway at constant for 18 s and then takes off at a speed of 60 m/s. What is the average acceleration of the plane?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The de-excitation of a state occurs by competing emission and relaxation processes. If the relaxation mechanisms are very effective:a) the emission of radiation is largeb) the emission of radiation is smallc) the emission occurs at a shorter wavelengthd) the de-excitation occurs only by emission processes
m
C
A block of mass m slides down a ramp of height hand
collides with an identical block that is initially at rest.
The two blocks stick together and travel around a loop of
radius R without losing contact with the track. Point A is
at the top of the loop, point B is at the end of a horizon-
tal diameter, and point C is at the bottom of the loop, as
shown in the figure above. Assume that friction between
the track and blocks is negligible.
(a) The dots below represent the two connected
blocks at points A, B, and C. Draw free-body dia-
grams showing and labeling the forces (not com
ponents) exerted on the blocks at each position.
Draw the relative lengths of all vectors to reflect
the relative magnitude of the forces.
Point A
Point B
Point C
(b) For each of the following, derive an expression in
terms of m, h, R, and fundamental constants.
i. The speed of moving block at the bottom of
the ramp, just before it contacts the stationary
block
ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown.
Assume the positive direction is upward.
Velocity (m/s)
3.0
2.5
2.0
1.5
1.0
0.5
0
0
5.0
10
15
20
25
Time (s)
(a) Briefly describe the motion of the elevator.
Justify your description with reference to the
graph.
(b) Assume the elevator starts from an initial position
of y = 0 at t=0. Deriving any numerical values
you
need from the graph:
i. Write an equation for the position as a
function of time for the elevator from
t=0 to t = 3.0 seconds.
ii. Write an equation for the position as a
function of time for the elevator from t = 3.0
seconds to t = 19 seconds.
(c) A student of weight mg gets on the elevator
and rides the elevator during the time interval
shown in the graph. Consider the force of con-
tact, F, between the floor and the student. How
Justify your answer with reference to the graph
does F compare to mg at the following times?
and your equations above.
i. = 1.0 s
ii. = 10.0 s
Chapter 3 Solutions
University Physics Volume 1
Ch. 3 - Check your Understanding A cyclist rides 3 km west...Ch. 3 - Check your Understanding The position of an object...Ch. 3 - Check Your Understanding Protons in a linear...Ch. 3 - Check Your Understanding An airplane lands on a...Ch. 3 - Check Your Understanding A manned rocket...Ch. 3 - Check Your Understanding A bicycle has a constant...Ch. 3 - Check Your Understanding A chunk of ice beaks off...Ch. 3 - Check Your Understanding A particle starts from...Ch. 3 - Position, Displacement, and Average Velocity Give...Ch. 3 - Under what circumstances does distance traveled...
Ch. 3 - Bacteria move back and forth using their flagella...Ch. 3 - Give an example of a device used to measure time...Ch. 3 - Does a car’s odometer measure distance traveled or...Ch. 3 - During a given time interval the average velocity...Ch. 3 - There is a distinction between average speed and...Ch. 3 - Does the speedometer of a car measure speed or...Ch. 3 - If you divide the total distance traveled on a car...Ch. 3 - How are instantaneous velocity and instantaneous...Ch. 3 - Is it possible for speed to be constant while...Ch. 3 - Is it possible for velocity to be constant while...Ch. 3 - Give an example in which velocity is zero yet...Ch. 3 - If a subway train is moving to the left (has a...Ch. 3 - Plus and minus signs are used in one-dimensional...Ch. 3 - Motion with Constant Acceleration When analyzing...Ch. 3 - State two scenarios of the kinematics of single...Ch. 3 - What is the acceleration of a rock thrown straight...Ch. 3 - An object that is thrown straight up falls back to...Ch. 3 - Suppose you throw a rock nearly straight up at a...Ch. 3 - The severity of a fall depends on your speed when...Ch. 3 - How many times higher could an astronaut jump on...Ch. 3 - Finding Velocity and Displacement from...Ch. 3 - Position, Displacement, and Average Velocity...Ch. 3 - A car is 2.0 km west of a traffic light at t=0 and...Ch. 3 - The Shanghai maglev train connects Longyang Road...Ch. 3 - The position of a particle moving along the x...Ch. 3 - A cyclist rides 8.0 km east for 20 minutes, then...Ch. 3 - On February 15, 2013, a superbolide meteor...Ch. 3 - A woodchuck runs 20 m to the right in 5 s, then...Ch. 3 - Sketch the velocity-versus-time graph from the...Ch. 3 - Sketch the velocity-versus-time graph from the...Ch. 3 - Given the following velocity-versus-time graph,...Ch. 3 - An object has a position function x(t)=5tm . (a)...Ch. 3 - A particle moves along the x -axis according to...Ch. 3 - Unreasonable results. A particle moves along the x...Ch. 3 - Average and Instantaneous Acceleration A cheetah...Ch. 3 - Dr. John Paul Stapp was U.S. Air Force officer who...Ch. 3 - Sketch the acceleration-versus-time graph from the...Ch. 3 - A commuter backs her car out of her garage with an...Ch. 3 - Assume an intercontinental ballistic goes from...Ch. 3 - An airplane, starting from rest, move down the...Ch. 3 - Motion with Constant Acceleration A particle moves...Ch. 3 - A particle moves in a straight line with an...Ch. 3 - A particle moves in a straight line with an...Ch. 3 - (a) Sketch a graph of velocity versus time...Ch. 3 - (a) Sketch a graph of acceleration versus time...Ch. 3 - A particle has a contant acceleration of 6.0m/s2 ....Ch. 3 - At t=10s , a particle is moving from left to right...Ch. 3 - A well-thrown ball is caught in a well-padded...Ch. 3 - A bullet in a gun is accelerated from the firing...Ch. 3 - (a) A light-rail commuter train accelerates at a...Ch. 3 - While entering a freeway, a car accelerates from...Ch. 3 - Unreasonable results At the end of a race, a...Ch. 3 - Blood is accelerated from rest to 30.0 cm/s in a...Ch. 3 - During a slap shot, a hockey player accelerates...Ch. 3 - A powerful motocycle can accelerate from rest to...Ch. 3 - Freight trains can product only relatively small...Ch. 3 - A fireworks shell is accelerated from rest to a...Ch. 3 - A swan on a lake gets airborne by flapping its...Ch. 3 - A woodpecker’s brain is specially protected from...Ch. 3 - An unwary football player collides with a padded...Ch. 3 - A care package is dropped out of a cargo plane and...Ch. 3 - An express train passes through a station. It...Ch. 3 - Unreasonable results Dragsters can actually reach...Ch. 3 - Calculate the displacement and velocity at times...Ch. 3 - Calculate the displacement and velocity at times...Ch. 3 - A basketball referee tosses the ball straight up...Ch. 3 - A rescue helicopter is hovering over a person...Ch. 3 - Unreasonable results A dolphin in an aquatic show...Ch. 3 - A diver bounces straight up from a diving board,...Ch. 3 - (a) Calculate the height of a cliff if it takes...Ch. 3 - A very strong, but inept, shot putter puts the...Ch. 3 - You throw a ball straight up with an initial...Ch. 3 - A kangaroo can jump over an object 2.50 m high....Ch. 3 - Standing at the base of one of the cliffs of Mt....Ch. 3 - There is a 25O-m-high cliff at Half Dome in...Ch. 3 - The acceleration of a particle varies with time...Ch. 3 - Between t=0 and t=t0 , a rocket moves straight...Ch. 3 - The velocity of a particle moving along the x...Ch. 3 - A particle at rest leaves the origin with its...Ch. 3 - Professional baseball player Nolan Ryan could...Ch. 3 - An airplane leaves Chicago and makes the 3000-km...Ch. 3 - Unreasonable Results A cyclist rides 16.0 km east,...Ch. 3 - An object has an acceleration of +1.2cm/s2 . At...Ch. 3 - A particle moves along the x -axis according to...Ch. 3 - A particle moving at constant acceleration has...Ch. 3 - A train is mowing up a steep grade at constant...Ch. 3 - An electron is moving in a straight line with a...Ch. 3 - An ambulance driver is rushing a patient to the...Ch. 3 - A motorcycle that is slowing down uniformly covers...Ch. 3 - A cyclist travels from point A to point B in 10...Ch. 3 - Two trains are moving at 30 m/s in opposite...Ch. 3 - A 10.0-m-long truck moving with a constant...Ch. 3 - A police car waits in hiding slightly off the...Ch. 3 - Pablo is running in a half marathon at a velocity...Ch. 3 - Unreasonable results A runner approaches the...Ch. 3 - An airplane accelerates at 5.0m/s2 for 30.0 s....Ch. 3 - Compare the distance traveled of an object that...Ch. 3 - An object is moving east with a constant velocity...Ch. 3 - A ball is thro straight up. It passes a...Ch. 3 - A coin is dropped from a hot-air balloon that is...Ch. 3 - A soft tennis ball is dropped onto a hard floor...Ch. 3 - Unreasonable results. A raindrop falls from a...Ch. 3 - Compare the time in the air of a basketball player...Ch. 3 - Suppose that a person takes 0.5 s to react and...Ch. 3 - A hot-air balloon rises from ground level at a...Ch. 3 - (a) A world record was se for the men’s 100-m dash...Ch. 3 - An object is dropped from a height of 75.0 m above...Ch. 3 - A steel ball is dropped onto a hard floor from a...Ch. 3 - An object is dropped from a roof of a building of...Ch. 3 - In a 100-rn race, the winner is timed at 11.2 s....Ch. 3 - The position of a particle moving along the x...Ch. 3 - A cyclist sprints at the end of a race to clinch a...Ch. 3 - In 1967, New Zealander Burt Munro set the world...
Additional Science Textbook Solutions
Find more solutions based on key concepts
33. Consider the reaction:
The tabulated data were collected for the concentration of C4H8 as a function...
Chemistry: Structure and Properties (2nd Edition)
WHAT IF? As a cell begins the process of dividing, its chromosomes become shorter, thicker, and individually vi...
Campbell Biology in Focus (2nd Edition)
An interpretation of the chemical equation for the reaction of HgCl2 and EDTA must be written. Concept Introduc...
Living By Chemistry: First Edition Textbook
List the types of electromagnetic radiation in order of decreasing energy per photon. a. gamma rays b. radio wa...
Introductory Chemistry (6th Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
Why are the top predators in food chains most severely affected by pesticides such as DDT?
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Students are asked to use circular motion to measure the coefficient of static friction between two materials. They have a round turntable with a surface made from one of the materials, for which they can vary the speed of rotation. They also have a small block of mass m made from the sec- ond material. A rough sketch of the apparatus is shown in the figure below. Additionally they have equipment normally found in a physics classroom. Axis m (a) Briefly describe a procedure that would allow you to use this apparatus to calculate the coefficient of static friction, u. (b) Based on your procedure, determine how to analyze the data collected to calculate the coefficient of friction. (c) One group of students collects the following data. r (m) fm (rev/s) 0.050 1.30 0.10 0.88 0.15 0.74 0.20 0.61 0.25 0.58 i. Use the empty spaces in the table as needed to calculate quantities that would allow you to use the slope of a line graph to calculate the coefficient of friction, providing labels with…arrow_forwardPART Aarrow_forwardanswer both questionarrow_forward
- Only part A.) of the questionarrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, −3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forward
- In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardfine the magnitude of the vector product express in sq meters what direction is the vector product in -z or +zarrow_forward4) Three point charges of magnitude Q1 = +2.0 μC, Q2 = +3.0 μС, Q3 = = +4.0 μС are located at the corners of a triangle as shown in the figure below. Assume d = 20 cm. (a) Find the resultant force vector acting on Q3. (b) Find the magnitude and direction of the force. d Q3 60° d Q1 60° 60° Q2 darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY