University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 112CP
In a 100-rn race, the winner is timed at 11.2 s. The second-place finisher’s time Is 11.6 s. How far Is the second-place finisher behind the winner when she crosses the finish line? Assume the velocity of each runner is constant throughout the race.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.
Lab-Based Section
Use the following information to answer the lab based scenario.
A student performed an experiment in an attempt to determine the index of refraction of glass.
The student used a laser and a protractor to measure a variety of angles of incidence and
refraction through a semi-circular glass prism. The design of the experiment and the student's
results are shown below.
Angle of
Incidence (°)
Angle of
Refraction (º)
20
11
30
19
40
26
50
31
60
36
70
38
2a) By hand (i.e., without using computer software), create a linear graph on graph paper
using the student's data. Note: You will have to manipulate the data in order to achieve a
linear function.
2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your
answer to the nearest hundredth.
Use the following information to answer the next two questions.
A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in
the diagram.
3a) Determine the critical angle of zircon.
35.0°
70°
55
55°
3b) Determine the angle of refraction when the laser beam leaves the prism.
Chapter 3 Solutions
University Physics Volume 1
Ch. 3 - Check your Understanding A cyclist rides 3 km west...Ch. 3 - Check your Understanding The position of an object...Ch. 3 - Check Your Understanding Protons in a linear...Ch. 3 - Check Your Understanding An airplane lands on a...Ch. 3 - Check Your Understanding A manned rocket...Ch. 3 - Check Your Understanding A bicycle has a constant...Ch. 3 - Check Your Understanding A chunk of ice beaks off...Ch. 3 - Check Your Understanding A particle starts from...Ch. 3 - Position, Displacement, and Average Velocity Give...Ch. 3 - Under what circumstances does distance traveled...
Ch. 3 - Bacteria move back and forth using their flagella...Ch. 3 - Give an example of a device used to measure time...Ch. 3 - Does a car’s odometer measure distance traveled or...Ch. 3 - During a given time interval the average velocity...Ch. 3 - There is a distinction between average speed and...Ch. 3 - Does the speedometer of a car measure speed or...Ch. 3 - If you divide the total distance traveled on a car...Ch. 3 - How are instantaneous velocity and instantaneous...Ch. 3 - Is it possible for speed to be constant while...Ch. 3 - Is it possible for velocity to be constant while...Ch. 3 - Give an example in which velocity is zero yet...Ch. 3 - If a subway train is moving to the left (has a...Ch. 3 - Plus and minus signs are used in one-dimensional...Ch. 3 - Motion with Constant Acceleration When analyzing...Ch. 3 - State two scenarios of the kinematics of single...Ch. 3 - What is the acceleration of a rock thrown straight...Ch. 3 - An object that is thrown straight up falls back to...Ch. 3 - Suppose you throw a rock nearly straight up at a...Ch. 3 - The severity of a fall depends on your speed when...Ch. 3 - How many times higher could an astronaut jump on...Ch. 3 - Finding Velocity and Displacement from...Ch. 3 - Position, Displacement, and Average Velocity...Ch. 3 - A car is 2.0 km west of a traffic light at t=0 and...Ch. 3 - The Shanghai maglev train connects Longyang Road...Ch. 3 - The position of a particle moving along the x...Ch. 3 - A cyclist rides 8.0 km east for 20 minutes, then...Ch. 3 - On February 15, 2013, a superbolide meteor...Ch. 3 - A woodchuck runs 20 m to the right in 5 s, then...Ch. 3 - Sketch the velocity-versus-time graph from the...Ch. 3 - Sketch the velocity-versus-time graph from the...Ch. 3 - Given the following velocity-versus-time graph,...Ch. 3 - An object has a position function x(t)=5tm . (a)...Ch. 3 - A particle moves along the x -axis according to...Ch. 3 - Unreasonable results. A particle moves along the x...Ch. 3 - Average and Instantaneous Acceleration A cheetah...Ch. 3 - Dr. John Paul Stapp was U.S. Air Force officer who...Ch. 3 - Sketch the acceleration-versus-time graph from the...Ch. 3 - A commuter backs her car out of her garage with an...Ch. 3 - Assume an intercontinental ballistic goes from...Ch. 3 - An airplane, starting from rest, move down the...Ch. 3 - Motion with Constant Acceleration A particle moves...Ch. 3 - A particle moves in a straight line with an...Ch. 3 - A particle moves in a straight line with an...Ch. 3 - (a) Sketch a graph of velocity versus time...Ch. 3 - (a) Sketch a graph of acceleration versus time...Ch. 3 - A particle has a contant acceleration of 6.0m/s2 ....Ch. 3 - At t=10s , a particle is moving from left to right...Ch. 3 - A well-thrown ball is caught in a well-padded...Ch. 3 - A bullet in a gun is accelerated from the firing...Ch. 3 - (a) A light-rail commuter train accelerates at a...Ch. 3 - While entering a freeway, a car accelerates from...Ch. 3 - Unreasonable results At the end of a race, a...Ch. 3 - Blood is accelerated from rest to 30.0 cm/s in a...Ch. 3 - During a slap shot, a hockey player accelerates...Ch. 3 - A powerful motocycle can accelerate from rest to...Ch. 3 - Freight trains can product only relatively small...Ch. 3 - A fireworks shell is accelerated from rest to a...Ch. 3 - A swan on a lake gets airborne by flapping its...Ch. 3 - A woodpecker’s brain is specially protected from...Ch. 3 - An unwary football player collides with a padded...Ch. 3 - A care package is dropped out of a cargo plane and...Ch. 3 - An express train passes through a station. It...Ch. 3 - Unreasonable results Dragsters can actually reach...Ch. 3 - Calculate the displacement and velocity at times...Ch. 3 - Calculate the displacement and velocity at times...Ch. 3 - A basketball referee tosses the ball straight up...Ch. 3 - A rescue helicopter is hovering over a person...Ch. 3 - Unreasonable results A dolphin in an aquatic show...Ch. 3 - A diver bounces straight up from a diving board,...Ch. 3 - (a) Calculate the height of a cliff if it takes...Ch. 3 - A very strong, but inept, shot putter puts the...Ch. 3 - You throw a ball straight up with an initial...Ch. 3 - A kangaroo can jump over an object 2.50 m high....Ch. 3 - Standing at the base of one of the cliffs of Mt....Ch. 3 - There is a 25O-m-high cliff at Half Dome in...Ch. 3 - The acceleration of a particle varies with time...Ch. 3 - Between t=0 and t=t0 , a rocket moves straight...Ch. 3 - The velocity of a particle moving along the x...Ch. 3 - A particle at rest leaves the origin with its...Ch. 3 - Professional baseball player Nolan Ryan could...Ch. 3 - An airplane leaves Chicago and makes the 3000-km...Ch. 3 - Unreasonable Results A cyclist rides 16.0 km east,...Ch. 3 - An object has an acceleration of +1.2cm/s2 . At...Ch. 3 - A particle moves along the x -axis according to...Ch. 3 - A particle moving at constant acceleration has...Ch. 3 - A train is mowing up a steep grade at constant...Ch. 3 - An electron is moving in a straight line with a...Ch. 3 - An ambulance driver is rushing a patient to the...Ch. 3 - A motorcycle that is slowing down uniformly covers...Ch. 3 - A cyclist travels from point A to point B in 10...Ch. 3 - Two trains are moving at 30 m/s in opposite...Ch. 3 - A 10.0-m-long truck moving with a constant...Ch. 3 - A police car waits in hiding slightly off the...Ch. 3 - Pablo is running in a half marathon at a velocity...Ch. 3 - Unreasonable results A runner approaches the...Ch. 3 - An airplane accelerates at 5.0m/s2 for 30.0 s....Ch. 3 - Compare the distance traveled of an object that...Ch. 3 - An object is moving east with a constant velocity...Ch. 3 - A ball is thro straight up. It passes a...Ch. 3 - A coin is dropped from a hot-air balloon that is...Ch. 3 - A soft tennis ball is dropped onto a hard floor...Ch. 3 - Unreasonable results. A raindrop falls from a...Ch. 3 - Compare the time in the air of a basketball player...Ch. 3 - Suppose that a person takes 0.5 s to react and...Ch. 3 - A hot-air balloon rises from ground level at a...Ch. 3 - (a) A world record was se for the men’s 100-m dash...Ch. 3 - An object is dropped from a height of 75.0 m above...Ch. 3 - A steel ball is dropped onto a hard floor from a...Ch. 3 - An object is dropped from a roof of a building of...Ch. 3 - In a 100-rn race, the winner is timed at 11.2 s....Ch. 3 - The position of a particle moving along the x...Ch. 3 - A cyclist sprints at the end of a race to clinch a...Ch. 3 - In 1967, New Zealander Burt Munro set the world...
Additional Science Textbook Solutions
Find more solutions based on key concepts
35. Consider the reaction.
The graph shows the concentration of Br2 as a function of time.
a. Use the g...
Chemistry: Structure and Properties (2nd Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
WHAT IF? A chicken has 78 chromosomes in its somatic cells. How many chromosomes did the chicken inherit from ...
Campbell Biology (11th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of these star clusters is younge...
Cosmic Perspective Fundamentals
What are the minimum and maximum ages of the island of Kauai? Minimum age: ______million yr Maximum age: ______...
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Use the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardNo chatgpt pls will upvotearrow_forwardA beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .arrow_forward
- An aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?arrow_forwardROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forwardQuestion B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forward
- SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY