EBK THE COSMIC PERSPECTIVE
9th Edition
ISBN: 9780135161760
Author: Voit
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 35EAP
To determine
To Explain: The importance of ancient astronomy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Using the GUFSA Template. Round off your final answer to the nearest hundredths. As we already know, rockets travel at very high speeds. How much time will it take a rocket (in seconds) to reach the moon if the moon is 238,900 miles away from the Earth, and the rocket is travelling 1,800,000 centimeters per minute? (express your answer in meters per second)
Explain what is meant by the distance ladder in astronomy. Describe briefly how each “rung” of the distance ladder is calibrated so that a reliable measure of distance can be obtained using each of the methods. State clearly the range of distances that can be measured by each method that makes up the distance ladder.
Use Kepler's 3rd Law and the small angle approximation.
a) An object is located in the solar system at a distance from the Sun equal to 41 AU's . What is the objects orbital period?
b) An object seen in a telescope has an angular diameter equivalent to 41 (in units of arc seconds). What is its linear diameter if the object is 250 million km from you? Draw a labeled diagram of this situation.
Chapter 3 Solutions
EBK THE COSMIC PERSPECTIVE
Ch. 3 - Prob. 1VSCCh. 3 - Use the following questions to check your...Ch. 3 - Use the following questions to check your...Ch. 3 - Use the following questions to check your...Ch. 3 - Use the following questions to check your...Ch. 3 - Prob. 6VSCCh. 3 - Prob. 7VSCCh. 3 - Prob. 1EAPCh. 3 - Why did ancient peoples study astronomy? Describe...Ch. 3 - Describe the astronomical origins of our day,...
Ch. 3 - What is a lunar calendar? How can it be kept...Ch. 3 - What do we mean by a model in science?Ch. 3 - Summarize the development of the Greek geocentric...Ch. 3 - What was the Copernican revolution, and how did it...Ch. 3 - 8. What is an ellipse? Define its foci, semimajor...Ch. 3 - 9. State and explain the meaning of each of...Ch. 3 - Describe the three hallmarks of science and how we...Ch. 3 - 11. What is the difference between a hypothesis...Ch. 3 - What is the basic idea behind astrology? Explain...Ch. 3 - Science or Nonscience? Each of the following...Ch. 3 - Science or Nonscience? Each of the following...Ch. 3 - Science or Nonscience?
Each of the following...Ch. 3 - Science or Nonscience?
Each of the following...Ch. 3 - Science or Nonscience?
Each of the following...Ch. 3 - Science or Nonscience? Each of the following...Ch. 3 - Science or Nonscience? Each of the following...Ch. 3 - Science or Nonscience?
Each of the following...Ch. 3 - Science or Nonscience?
Each of the following...Ch. 3 - Science or Nonscience? Each of the following...Ch. 3 - In the Greek geocentric model, the retrograde...Ch. 3 - Which of the following was not a major advantage...Ch. 3 - When we say that a planet has a highly eccentric...Ch. 3 - Earth is closer to the Sun in January than in...Ch. 3 - According to Kepler’s third law, (a) Mercury...Ch. 3 - Tycho Brahe’s contribution to astronomy included...Ch. 3 - Galileo’s contribution to astronomy included (a)...Ch. 3 - Which of the following is not true about...Ch. 3 - Which of the following is not true about a...Ch. 3 - When Einstein’s theory of gravity (general...Ch. 3 - What Makes It Science? Choose a single idea in the...Ch. 3 - Prob. 35EAPCh. 3 - Prob. 36EAPCh. 3 - Prob. 37EAPCh. 3 - Earth’s Shape. It took thousands of years for...Ch. 3 - Prob. 40EAPCh. 3 - Copernican Players. Using a bulleted-list format,...Ch. 3 - Prob. 44EAPCh. 3 - The Metonic Cycle. The length of our calendar year...Ch. 3 - Chinese Calendar. The traditional Chinese lunar...Ch. 3 - Method of Eratosthenes I. You are an astronomer on...Ch. 3 - Method of Eratosthenes II. You are an astronomer...Ch. 3 - Mars Orbit. Find the perihelion and aphelion...Ch. 3 - Eris Orbit. The dwarf planet Eris orbits the Sun...Ch. 3 - New Planet Orbit. A newly discovered planet orbits...Ch. 3 - Halley Orbit. Halley’s Comet orbits the Sun every...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How do we know? Some people think science is like a grinder that cranks data into hypotheses. What would you tell them about the need for scientists to be creative and imaginative?arrow_forwardJohannes Kepler worked as an assistant to the observatory of Brahe at the age of 27. Brahe collected astronomical observations, which were passed into Kepler, on his death. Among the significant contributions of Brahe: 1. His observations on the planetary motion of Mars were used by later astronomers, including Kepler to construct the present model of the solar system. 2. In 1572, he observed supernova as a star that appeared suddenly, became visible for 18 months before it faded from view. Nowadays, supernova is called an exploding star. 3. In 1577, he observed a comet by measuring its parallax. His claim contradicted the idea of Aristotle that comets are "gases burning in the atmosphere." By measuring the parallax for the comet, he was able to show that the comet was further away than the Moon. 4. His findings that stars do not have parallax, he concluded that either: (a). the earth was motionless at the center of the universe; or (b). the stars were so far away that their parallax…arrow_forward(If relevant) A clearly labeled diagram (or diagrams) clearly pertaining to your analysis with a coordinate system and relevant labels. Final answer with appropriate units and significant figures. A 2-3 sentence reflection on your answer. Does it make sense? Why or why not? What are some implications? Do not just summarize your solution procedure.arrow_forward
- 1, 2, 3arrow_forwardI need the answer for question 4arrow_forwardPlease answer the question and subquestions completely! This is one whole question which has subquestions! According to the official Bartleby guidelines, each question can have up to two subquestions! Thank you! 1) Use Kepler's Law to find the time (in Earth’s years) for Mars to orbit the Sun if the radius of Mars’ orbit is 1.5 times the radius of Earth's orbit. 1.8 2.8 3.4 4.2 A) The mass of Mars is about 1/10 the mass of Earth. Its diameter is about 1/2 the diameter of Earth. What is the gravitational acceleration at the surface of Mars? 9.8 m/s2 2.0 m/s2 3.9 m/s2 4.9 m/s2 none of these B) A 9.0 x 10 3 kg satellite orbits the Earth at the distance of 2.56 x 10 7 m from Earth’s surface. What is its period? 1.1 x 10 4 s 4.1 x 10 4 s 5.7 x 10 4 s 1.5 x 10 5 sarrow_forward
- Milestone A: Walk 3.2 km (~2 miles) towards northeast. Milestone B: Walk 1.3 km towards southeast. Milestone C: Walk 2.4 km directly south. Surprise at the end! You have arrived at the treasure! Distance: What is the total distance traveled if you walk the distance A, B, C? Give your answer in km and miles. 2. Direction: a. what is meant by “north east?” b. what direction would this be on a cartesian coordinate system? c. What is meant by “south east?” d. What direction would this be on a cartesian coordinate system? e. What about “south”? f. What direction on cartesian coordinate system? 3. Draw the diagram: include drawing the resultant a. What does the resultant vector represent? 4. Calculate: use trigonometry to find the displacement.arrow_forwardDelay time for communication between GEO satellites and Earth. Use the relationship between distance (d), time (t) and speed (v), d = vt to repeat the calculation we did in class, but this time using the English units. Use the fact that GEO satellites orbit at 22,236 miles above Earth's equator, and that the speed of light is 1.86 x 105 mi/s. (Note that both of these values are equivalent to those used in class.) You may want to write this calculation on paper and insert a photo here.arrow_forwardQuestion 1 (Total: 30 points) a. What is a repeat ground-track orbit? b. Explain why repeat ground-track and Sun-synchronous orbits are typically used for Earth observation missions. c. The constraint for a Sun-synchronous and repeat ground-track orbit is given by T = 286, 400, where I is the orbital period in seconds, m the number of days and k the number of revolutions. Explain why this is, in fact, a constraint on the semi-major axis of the orbit.arrow_forward
- How Do We Know? Why is it important that a theory make testable predictions?arrow_forwardWhy might Tycho Brahe have hesitated to hire Kepler? Why do you suppose he appointed Kepler his scientific heir? What is limited about Keplers third law P2 = a3, where P is the time in units of years a planet takes to orbit the Sun and a is the planets average distance from the Sun in units of AU? (Hint: Look at the units.) What does this tell you about Kepler and his laws?arrow_forwardHow does Keplers first law of planetary motion overthrow one of the basic beliefs of classical astronomy? How about Keplers second law?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning