Practical Management Science
6th Edition
ISBN: 9781337406659
Author: WINSTON, Wayne L.
Publisher: Cengage,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 34P
a)
Summary Introduction
To determine: The way to meet the goal of the company.
Introduction: In linear programming, the unbounded solution would occur when the objective function is infinite. If no solution satisfied the constraints, then it is said to be an unfeasible solution.
b)
Summary Introduction
To investigate: The effects of changing the customer demand for each product by the factor 1+k.
Introduction: In linear programming, the unbounded solution would occur when the objective function is infinite. If no solution satisfied the constraints, then it is said to be an unfeasible solution.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Consider a piston-cylinder assembly that operates in isobaric process. Steam undergoes the process from 500°C to reach 1000°C. Select two (2) pressure values in the range of 10< P<45 MPa at which t
There are two companies manufacturing drones. Company A manufactures mass market drones, while company B manufactures customised drones according to customers’ requirements. In 2020, company A produces 3,200 drones, 3% of which were found to be defective and cannot pass the quality check. Company A employs 5 workers working an average of 8 hours a day in the drone production, and they worked 200 working days in 2020.In contrast, company B produces 900 drones, 10% of which were found to be defective and cannot pass the quality check. Company B employs 3 workers working an average of 6 hours a day in the drone production, and they worked 170 days in 2020.
(a) If the drone manufacturing is seen as a process, what is considered as the output of the production processes of companies A and B and why?
(b) Measure the single-factor manpower productivity for the two companies.
(c) Is it reasonable to compare the manpower productivity of the two companies and reach a conclusion that one company…
Three methods can be used for producing heat sensors for high-temperature furnaces. Method A will have a fixed cost of $140,000 per year and a production cost of $62 per part. Method B will have a fixed cost of $210,000 per year and a production cost of $28 per part. Method C will require the purchase of equipment costing $500,000. It will have a life of five years and a 25% of first cost salvage value. The production cost will be $53 per part. At an interest rate of 10% per year, determine the breakeven annual production rate between the two lowest cost methods.
Chapter 3 Solutions
Practical Management Science
Ch. 3.6 - Prob. 1PCh. 3.6 - Prob. 2PCh. 3.6 - Prob. 3PCh. 3.6 - Prob. 4PCh. 3.6 - Prob. 5PCh. 3.6 - Prob. 6PCh. 3.6 - Prob. 7PCh. 3.6 - Prob. 8PCh. 3.6 - Prob. 9PCh. 3.7 - Prob. 10P
Ch. 3.7 - Prob. 11PCh. 3.7 - Prob. 12PCh. 3.7 - Prob. 13PCh. 3.7 - Prob. 14PCh. 3.7 - Prob. 15PCh. 3.7 - Prob. 16PCh. 3.7 - Prob. 17PCh. 3.8 - The Pigskin Company produces footballs. Pigskin...Ch. 3.8 - The Pigskin Company produces footballs. Pigskin...Ch. 3.8 - The Pigskin Company produces footballs. Pigskin...Ch. 3.8 - Prob. 21PCh. 3.8 - Prob. 22PCh. 3.8 - Prob. 23PCh. 3.8 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - Prob. 30PCh. 3 - Prob. 31PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - Prob. 47PCh. 3 - Prob. 48PCh. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Prob. 51PCh. 3 - Prob. 52PCh. 3 - Prob. 1C
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- In this version of dice blackjack, you toss a single die repeatedly and add up the sum of your dice tosses. Your goal is to come as close as possible to a total of 7 without going over. You may stop at any time. If your total is 8 or more, you lose. If your total is 7 or less, the house then tosses the die repeatedly. The house stops as soon as its total is 4 or more. If the house totals 8 or more, you win. Otherwise, the higher total wins. If there is a tie, the house wins. Consider the following strategies: Keep tossing until your total is 3 or more. Keep tossing until your total is 4 or more. Keep tossing until your total is 5 or more. Keep tossing until your total is 6 or more. Keep tossing until your total is 7 or more. For example, suppose you keep tossing until your total is 4 or more. Here are some examples of how the game might go: You toss a 2 and then a 3 and stop for total of 5. The house tosses a 3 and then a 2. You lose because a tie goes to the house. You toss a 3 and then a 6. You lose. You toss a 6 and stop. The house tosses a 3 and then a 2. You win. You toss a 3 and then a 4 for total of 7. The house tosses a 3 and then a 5. You win. Note that only 4 tosses need to be generated for the house, but more tosses might need to be generated for you, depending on your strategy. Develop a simulation and run it for at least 1000 iterations for each of the strategies listed previously. For each strategy, what are the two values so that you are 95% sure that your probability of winning is between these two values? Which of the five strategies appears to be best?arrow_forwardIt costs a pharmaceutical company 75,000 to produce a 1000-pound batch of a drug. The average yield from a batch is unknown but the best case is 90% yield (that is, 900 pounds of good drug will be produced), the most likely case is 85% yield, and the worst case is 70% yield. The annual demand for the drug is unknown, with the best case being 20,000 pounds, the most likely case 17,500 pounds, and the worst case 10,000 pounds. The drug sells for 125 per pound and leftover amounts of the drug can be sold for 30 per pound. To maximize annual expected profit, how many batches of the drug should the company produce? You can assume that it will produce the batches only once, before demand for the drug is known.arrow_forwardYou now have 5000. You will toss a fair coin four times. Before each toss you can bet any amount of your money (including none) on the outcome of the toss. If heads comes up, you win the amount you bet. If tails comes up, you lose the amount you bet. Your goal is to reach 15,000. It turns out that you can maximize your chance of reaching 15,000 by betting either the money you have on hand or 15,000 minus the money you have on hand, whichever is smaller. Use simulation to estimate the probability that you will reach your goal with this betting strategy.arrow_forward
- You now have 10,000, all of which is invested in a sports team. Each year there is a 60% chance that the value of the team will increase by 60% and a 40% chance that the value of the team will decrease by 60%. Estimate the mean and median value of your investment after 50 years. Explain the large difference between the estimated mean and median.arrow_forwardThe game of Chuck-a-Luck is played as follows: You pick a number between 1 and 6 and toss three dice. If your number does not appear, you lose 1. If your number appears x times, you win x. On the average, use simulation to find the average amount of money you will win or lose on each play of the game.arrow_forwardConsider the following card game. The player and dealer each receive a card from a 52-card deck. At the end of the game the player with the highest card wins; a tie goes to the dealer. (You can assume that Aces count 1, Jacks 11, Queens 12, and Kings 13.) After the player receives his card, he keeps the card if it is 7 or higher. If the player does not keep the card, the player and dealer swap cards. Then the dealer keeps his current card (which might be the players original card) if it is 9 or higher. If the dealer does not keep his card, he draws another card. Use simulation with at least 1000 iterations to estimate the probability that the player wins. (Hint: See the file Sampling Without Replacement.xlsx, one of the example files, to see a clever way of simulating cards from a deck so that the Same card is never dealt more than once.)arrow_forward
- The Tinkan Company produces one-pound cans for the Canadian salmon industry. Each year the salmon spawn during a 24-hour period and must be canned immediately. Tinkan has the following agreement with the salmon industry. The company can deliver as many cans as it chooses. Then the salmon are caught. For each can by which Tinkan falls short of the salmon industrys needs, the company pays the industry a 2 penalty. Cans cost Tinkan 1 to produce and are sold by Tinkan for 2 per can. If any cans are left over, they are returned to Tinkan and the company reimburses the industry 2 for each extra can. These extra cans are put in storage for next year. Each year a can is held in storage, a carrying cost equal to 20% of the cans production cost is incurred. It is well known that the number of salmon harvested during a year is strongly related to the number of salmon harvested the previous year. In fact, using past data, Tinkan estimates that the harvest size in year t, Ht (measured in the number of cans required), is related to the harvest size in the previous year, Ht1, by the equation Ht = Ht1et where et is normally distributed with mean 1.02 and standard deviation 0.10. Tinkan plans to use the following production strategy. For some value of x, it produces enough cans at the beginning of year t to bring its inventory up to x+Ht, where Ht is the predicted harvest size in year t. Then it delivers these cans to the salmon industry. For example, if it uses x = 100,000, the predicted harvest size is 500,000 cans, and 80,000 cans are already in inventory, then Tinkan produces and delivers 520,000 cans. Given that the harvest size for the previous year was 550,000 cans, use simulation to help Tinkan develop a production strategy that maximizes its expected profit over the next 20 years. Assume that the company begins year 1 with an initial inventory of 300,000 cans.arrow_forwardA retail store sold in the month of April 5,000 products that produced $45,000 in sales. In the month of May the company sold 6,000 products. The store workforce consists of four full-time workers who work 40-hour week. In April the store also had seven part-time workers at 10 hours per week, and in May the store had nine part-timers at 15 hours per week (assume four weeks in each month). Using sales dollars as the measure of output (assume the price of the product was the same for both months), what is the percentage change in labor productivity from April to May? Answer: 2.arrow_forwardA tire factory wants to set a minimum mileage guarantee on its tyre. Tyre tests reveals that the mean mileage has a normal distribution with mean 128 and standard deviation 1.76. the manufacturer wants to set the minimum guaranteed mileage so that no more than 2.5 percent of tyres will have to be replaced. The Lower limit of guaranteed mileage is :? (Write your answer in 2 decimals places)arrow_forward
- A company owns a 5-year-old turret lathe that has a book value of $23,000. The present market value for the lathe is $18,000. The expected decline in market value is $1,700/year to a minimum market value of $4,080; maintenance plus operating costs for the lathe equal $4,470/year.A new turret lathe can be purchased for $46,000 and will have an expected life of 8 years. The market value for the turret lathe is expected to equal $46,000(0.70)k at the end of year k. Annual maintenance and operating cost is expected to equal $1,900. Based on a 12% MARR, should the old lathe be replaced now? Use an equivalent uniform annual cost comparison, a planning horizon of 7 years, and the cash flow approach.EUAC for keeping old turret lathe: $EUAC for replacing turret lathe: $arrow_forwardIf the Poisson's ratio of an elastic material is 0.4, then find the ratio of modulus of rigidity to Young's modulus..If the Poisson's ratio of an elastic material is 0.4, then find the ratio of modulus of rigidity to Young's Modulus If the Poisson's ratio of an elastic material is 0.4, then find the ratio of modulus of rigidity to Young's modulus...?arrow_forwardWilliams Auto has a machine that installs tires. The machine is now in need of repair. The machineoriginally cost $10,000 and the repair will cost $1,000, but the machine will then last two years.The labor cost of operating the machine is $0.50 per tire. Instead of repairing the old machine,Williams could buy a new machine at a cost of $5,000 that would also last two years; the labor costwould then be reduced to $0.25 per tire. Should Williams repair or replace the machine if it expectsto install 10,000 tires in the next two years?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,