
Concept explainers
(a)
Interpretation:
Chemical equation given below has to be balanced.
Concept Introduction:
Steps followed to obtain balanced chemical equation:
- Chemical formulas of the products and reactants are written. Individual reactants and products are separated using plus sign while the reactants are separated from products by an arrow.
- Elements that appear only once on the reactant side and product side is balanced first. Subscript should not be changed in chemical formula while balancing coefficients can be added until the total number of atoms of an element becomes equal on reactant and product side.
- Other elements present also balanced in the same way by adding balancing coefficients.
- Final check has to be performed in order to check that each element that is present in the chemical equation is balanced.
- Symbols have to be added for solids, liquids gases and aqueous solutions to indicate the physical state of the known reactants and products.
(a)

Explanation of Solution
Chemical equation given is shown below.
Above chemical equation is not balanced. There is one potassium atom on the reactant side while there are two potassium atoms on the product side. Adding coefficient
In the above equation, there are four hydrogen atoms on the reactant side while there are only two hydrogen atoms on the product side. Adding coefficient
(b)
Interpretation:
Chemical equation given below has to be balanced.
Concept Introduction:
Refer part (a).
(b)

Explanation of Solution
Chemical equation given is shown below.
Above chemical equation is not balanced. There are three lithium atoms on the reactant side while there is only one lithium atom on the product side. Adding coefficient
In the above equation, there are two hydrogen atoms on the reactant side while in the product side a total of six hydrogen atoms are present. Adding coefficient
(c)
Interpretation:
Chemical equation given below has to be balanced.
Concept Introduction:
Refer part (a).
(c)

Explanation of Solution
Chemical equation given is shown below.
Above chemical equation is not balanced. There are four aluminium atoms on the reactant side but in the product side there is only one aluminium atom. Adding coefficient
In the above chemical equation, there is only one chlorine atom on the reactant side while in the product side there are twelve chlorine atoms. Adding coefficient
In the above chemical equation, there are twelve hydrogen atoms in the reactant side while in the product side there are four hydrogen atoms. Adding coefficient
(d)
Interpretation:
Chemical equation given below has to be balanced.
Concept Introduction:
Refer part (a).
(d)

Explanation of Solution
Chemical equation given is shown below.
Above chemical equation is not balanced. There is one bromine atom on the reactant side and two bromine atoms on the product side. Adding coefficient
Want to see more full solutions like this?
Chapter 3 Solutions
General Chemistry
- Predict the major organic product for this reaction.arrow_forwardPredict the major organic product for this reaction.arrow_forwardWhat are the missing reagents for the spots labeled 1 and 3? Please give a detailed explanation and include the drawings and show how the synthesis proceeds with the reagents.arrow_forward
- Predict the major organic product for this reaction.arrow_forward3) The following molecule, chloral is a common precursor to chloral hydrate, an acetal type molecule that was a first-generation anesthetic. Draw a mechanism that accounts for tis formation and speculate why it does not require the use of an acid catalyst, like most hemiacetal and acetal reaction: (10 pts) H H₂Oarrow_forwardYou are a Quality Manager for a very well-known food ingredient company that produces umami powder, and you are responsible for setting specification limits. The net weight (in grams) of bags of unami powder is monitored by taking samples of six bags on an hourly basis during production. The label on every bag reports a contents of 1KG umami powder. The process mean is μ = 1012 g, and when the process is properly adjusted, it varies with σ = 11 g. QUESTION: Your organisation strives to ensure that >99.97% of bags of umami powder produced conforms to specification. What performance process index value is required to achieve this process yield? Calculate PPK using the following formula: Ppk = (USL – mean)/3 σ Ppk = (mean -LSL)/ 3 σarrow_forward
- You are a Quality Manager for a very well-known food ingredient company that produces umami powder, and you are responsible for setting specification limits. The net weight (in grams) of bags of unami powder is monitored by taking samples of six bags on an hourly basis during production. The label on every bag reports a contents of 1KG umami powder. The process mean is μ = 1012 g, and when the process is properly adjusted, it varies with σ = 11 g. QUESTION: Provide a valid and full justification as to whether you would advise your manager that the process is satisfactory when it is properly adjusted, or would you seek their approval to improve the process?arrow_forwardYou are a Quality Manager for a very well-known food ingredient company that produces umami powder, and you are responsible for setting specification limits. The net weight (in grams) of bags of unami powder is monitored by taking samples of six bags on an hourly basis during production. The label on every bag reports a contents of 1KG umami powder. The process mean is μ = 1012 g, and when the process is properly adjusted, it varies with σ = 11 g. QUESTION: Using all the available information, set the upper and lower specification limits.arrow_forward43) 10.00 ml of vinegar (active ingredient is acetic acid) is titrated to the endpoint using 19.32 ml of 0.250 M sodium hydroxide. What is the molarity of acetic acid in the vinegar? YOU MUST SHOW YOUR WORK. NOTE: MA x VA = MB x VBarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





