
(a)
Interpretation:
Chemical equation given below has to be balanced and name of reactants, and products has to be given.
Concept Introduction:
Steps followed to obtain balanced chemical equation:
- Chemical formulas of the products and reactants are written. Individual reactants and products are separated using plus sign while the reactants are separated from products by an arrow.
- Elements that appear only once on the reactant side and product side is balanced first. Subscript should not be changed in chemical formula while balancing coefficients can be added until the total number of atoms of an element becomes equal on reactant and product side.
- Other elements present also balanced in the same way by adding balancing coefficients.
- Final check has to be performed in order to check that each element that is present in the chemical equation is balanced.
- Symbols have to be added for solids, liquids gases and aqueous solutions to indicate the physical state of the known reactants and products.
(a)

Explanation of Solution
Chemical equation given is shown below.
Above chemical equation is not balanced. There are two chlorine atoms on the left side of the equation while there are three chlorine atoms on right side of equation. Adding coefficient
In the above equation, there is one aluminium atom in reactant side while there are two aluminium atoms on the product side. Adding coefficient
Name of reactants and products is given below.
(b)
Interpretation:
Chemical equation given below has to be balanced and name of reactants, and products has to be given.
Concept Introduction:
Refer part (a).
(b)

Explanation of Solution
Chemical equation given is shown below.
Above chemical equation is not balanced. There are two oxygen atoms on the left side of the equation while there are three oxygen atoms on right side of equation. Adding coefficient
In the above equation, there is one aluminium atom in reactant side while there are four aluminium atoms on the product side. Adding coefficient
Name of reactants and products is given below.
(c)
Interpretation:
Chemical equation given below has to be balanced and name of reactants, and products has to be given.
Concept Introduction:
Refer part (a).
(c)

Explanation of Solution
Chemical equation given is shown below.
Above chemical equation is not balanced. There are two chlorine atoms on the left side of the equation while there is only one chlorine atom on the right side of the equation. Adding coefficient
In the above chemical equation, there is one sodium atom on the left side of the equation while two sodium atoms are present on right side of the equation. Adding coefficient
Name of reactants and products is given below.
(d)
Interpretation:
Chemical equation given below has to be balanced and name of reactants, and products has to be given.
Concept Introduction:
Refer part (a).
(d)

Explanation of Solution
Chemical equation given is shown below.
Above chemical equation is not balanced. There are two oxygen atoms on the left side of the equation while there is only one oxygen atom on right side of equation. Adding coefficient
In the above equation, there is one beryllium atom in reactant side while there are two beryllium atoms on the product side. Adding coefficient
Name of reactants and products is given below.
(e)
Interpretation:
Chemical equation given below has to be balanced and name of reactants, and products has to be given.
Concept Introduction:
Refer part (a).
(e)

Explanation of Solution
Chemical equation given is shown below.
Above chemical equation is not balanced. There is one potassium atom on the reactant side while there are two potassium atoms on the product side. Adding coefficient
Name of reactants and products is given below.
Want to see more full solutions like this?
Chapter 3 Solutions
General Chemistry
- For each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. དྲ。 ✗MgBr ? O CI Will the first product that forms in this reaction create a new C-C bond? Yes No • ? Will the first product that forms in this reaction create a new CC bond? Yes No × : ☐ Xarrow_forwardPredict the major products of this organic reaction: OH NaBH4 H ? CH3OH Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. ☐ : Sarrow_forwardPredict the major products of this organic reaction: 1. LIAIHA 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. X : ☐arrow_forward
- For each reaction below, decide if the first stable organic product that forms in solution will create a new C - C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 tu ? ? OH Will the first product that forms in this reaction create a new CC bond? Yes No Will the first product that forms in this reaction create a new CC bond? Yes No C $ ©arrow_forwardAs the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C-C bond as its major product: 1. MgCl ? 2. H₂O* If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new CC bond. G marrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M NH4 Ksp Hg2Br2 = 5.6×10-23.arrow_forward
- give example for the following(by equation) a. Converting a water insoluble compound to a soluble one. b. Diazotization reaction form diazonium salt c. coupling reaction of a diazonium salt d. indacator properties of MO e. Diazotization ( diazonium salt of bromobenzene)arrow_forward2-Propanone and ethyllithium are mixed and subsequently acid hydrolyzed. Draw and name the structures of the products.arrow_forward(Methanesulfinyl)methane is reacted with NaH, and then with acetophenone. Draw and name the structures of the products.arrow_forward
- 3-Oxo-butanenitrile and (E)-2-butenal are mixed with sodium ethoxide in ethanol. Draw and name the structures of the products.arrow_forwardWhat is the reason of the following(use equations if possible) a.) In MO preperation through diazotization: Addition of sodium nitrite in acidfied solution in order to form diazonium salt b.) in MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at low pH c.) In MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at pH 4.5 d.) Avoiding not cooling down the reaction mixture when preparing the diazonium salt e.) Cbvcarrow_forwardA 0.552-g sample of an unknown acid was dissolved in water to a total volume of 20.0 mL. This sample was titrated with 0.1103 M KOH. The equivalence point occurred at 29.42 mL base added. The pH of the solution at 10.0 mL base added was 3.72. Determine the molar mass of the acid. Determine the Ka of the acid.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





