(a)
Interpretation:
To find the Miller Indices of direction for the points from (1,0,2) to (2,4,1)
Concept Introduction:
The unit cell directions are of great importance. To describe these directions, there are shorthand notations. This is called miller indices.
(b)
Interpretation:
To find the Miller Indices of direction for the points from (2, 1, 3) to (5, 4, 2)
Concept Introduction:
The unit cell directions are of great importance. To describe these directions, there are shorthand notations. This is called miller indices.
(c)
Interpretation:
To find the Miller Indices of direction for the points from (3, 1, 3) to (9, 1, 5)
Concept Introduction:
The unit cell directions are of great importance. To describe these directions, there are shorthand notations. This is called miller indices.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Essentials Of Materials Science And Engineering, Si Edition
- Q3. Answer the following questions T 1. Compared to the bipolar voltage-switching scheme, the unipolar scheme is "effectively" doubling the switching frequency. Explain the statement's meaning and how this effect can be generated. 2. What are the properties of a good power switch, and what are its basic ratings? 3. What are the objectives of any PWM strategy for three-phase inverters? 4. Why is the current control PWM rectifier in the dq rotating reference frame preferred over the abc reference frame? 5. Define the switch utilization factor. Show how this factor can be calculated for different single-phase inverters for square wave operation mode at the maximum rated output.arrow_forwardQ1.B. Explain output control by voltage cancellation in a single-phase inverter. What are the advantages over square wave operation?arrow_forwardQ3.B. What is the problem of three-phase HW rectifier and how can be resolved?arrow_forward
- You are called by your supervisor to go and check a potential data bridge problem. What are the stepsyou will follow in order to check the database and fix any problems with it? Have in mind that youSHOULD normalize it as well. Describe in full, consider the following taking the database offline is not allowed since people are connected to it and how personal data might be bridged and not secured.Provide three references with you answer.arrow_forwardYou are called by your supervisor to go and check a potential data bridge problem. What are the stepsyou will follow in order to check the database and fix any problems with it? Have in mind that youSHOULD normalize it as well. Describe in full, consider the following:• Taking the database offline is not allowed since people are connected to it.• Personal data might be bridged and not secured. Provide three refernces with you answerarrow_forwardQ3-consider the unity feedback system shown below: a.Evaluate general formula of ess? b.Calculate the steady state error of the closed loop system due to R(s) unit step input, D(s)=0]? c.Calculate the steady-state response when D(s) and ramp and R(s)=0?arrow_forward
- You are called by your supervisor to go and check a potential data bridge problem. What are the stepsyou will follow in order to check the database and fix any problems with it? Have in mind that youSHOULD normalize it as well. Describe in full, consider the following:• Taking the database offline is not allowed since people are connected to it.• Personal data might be bridged and not secured. Provide three refernces with you answer from websitesarrow_forwardModern life has been impacted immensely by computers. Computers have penetrated every aspect of oursociety, either for better or for worse. From supermarket scanners calculating our shopping transactionswhile keeping store inventory; robots that handle highly specialized tasks or even simple human tasks,computers do much more than just computing. But where did all this technology come from and whereis it heading? Does the future look promising or should we worry about computers taking over theworld? Or are they just a necessary evil? Provide three references with your answer.arrow_forwardKindly solve this question with every work stepsarrow_forward
- step by steparrow_forward- = 400KHZ. Q1. In a Boost converter, L = 25 μH, Vin = 12 V, D = 0.4, P = 25 W, and fs (i) if the output load is changing. Calculate the critical value of the output load P,below which the converter will enter the discontinuous conduction mode of operation. Assume the total turn-on loss is equal to 2 W. (ii) Assuming the input voltage fluctuates from 10 V to 14 V and the output voltage is regulated to 20 V. Calculate the critical value of the inductance L below which this Boost converter will enter the discontinuous conduction mode of operation at P = 5 W. (iii) Draw the waveforms for inductor voltage, inductor current, and the capacitor current for this Boost converter at the output load that causes it to operate at the border of continuous and discontinuous modes. vd tow 77 N₂ AT 22 1-1arrow_forwardDon't use ai to answer I will report you answerarrow_forward
- MATLAB: An Introduction with ApplicationsEngineeringISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncEssentials Of Materials Science And EngineeringEngineeringISBN:9781337385497Author:WRIGHT, Wendelin J.Publisher:Cengage,Industrial Motor ControlEngineeringISBN:9781133691808Author:Stephen HermanPublisher:Cengage Learning
- Basics Of Engineering EconomyEngineeringISBN:9780073376356Author:Leland Blank, Anthony TarquinPublisher:MCGRAW-HILL HIGHER EDUCATIONStructural Steel Design (6th Edition)EngineeringISBN:9780134589657Author:Jack C. McCormac, Stephen F. CsernakPublisher:PEARSONFundamentals of Materials Science and Engineering...EngineeringISBN:9781119175483Author:William D. Callister Jr., David G. RethwischPublisher:WILEY