![EBK GENERAL, ORGANIC, & BIOLOGICAL CHEM](https://www.bartleby.com/isbn_cover_images/9781259298424/9781259298424_largeCoverImage.gif)
(a)
Interpretation:
The group number of the given electron-dot symbol should be stated.
Concept Introduction:
In an electron-dot symbol, dots represent the valence electrons around the elemental symbol.
When understanding an electron-dot symbol of an element, below facts should be considered;
- Each dot represents 1 electron.
- The dots are placed on the four sides of the elemental symbol.
- For 1 to 4 valence electrons, single dots are used.
- For > 4 electrons, the dots are paired.
Valence electrons are the most loosely bound electrons of an element. They are in the outermost shell, or the valence shell. Chemical properties of an element and its place in the periodic table depend on the number of valence electrons of that element: For main group elements, the group number is also the number of valence electrons of the element.
(b)
Interpretation:
The charge of the ion formed by the given element should be determined.
Concept Introduction:
An atom of a main group element loses or gains electrons forming ions to obtain the electronic configuration of the noble gas closest to it in the periodic table.
Cations are formed by losing electrons; thus they have fewer electrons than protons and are positively charged.
Anions are formed by gaining electrons;thus they have more electrons than protons and are negatively charged.
E.g. Oxygen (O) atom has 8 electrons (
(c)
Interpretation:
The formula of an ionic compound formed byZ and sodium should be determined.
Concept Introduction:
Ionic compounds are composed of cations and anions, which are tightly attracted to each other.
The sum of the charges in an ionic compound must be zero.
The formula for an ionic compound shows the ratio of ions that combine to give zero charge.
When cations and anions have different charges, the number of cations and anions differ so that the overall charge of the ionic compound be zero.
As an example, see the formulae of NaCl and MgCl2.
(d)
Interpretation:
The formula of an ionic compound formed byZ and magnesium should be determined.
Concept Introduction:
Ionic compounds are composed of cations and anions, which are tightly attracted to each other.
The sum of the charges in an ionic compound must always be zero.
The formula for an ionic compound shows the ratio of ions that combine to give zero charge.
When cations and anions have different charges, the number of cations and anions differ so that the overall charge of the ionic compound be zero.
As an example, see the formulae of NaCl and MgCl2.
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Chapter 3 Solutions
EBK GENERAL, ORGANIC, & BIOLOGICAL CHEM
- Don't used hand raiting and don't used Ai solutionarrow_forward* How many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4? * If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of NaOH and in the final volume (2.000 L) and assume random error.arrow_forwardYou are tasked with creating a calibration curve for the absorbance of cobalt solutions of various concentrations. You must prepare 5 standards with concentrations between 1.00 mg/L and 10.0 mg/L Co2+. You have a stock solution with a concentration of 40 mg/L Co2+ and all the standard lab glassware including transfer pipets and flasks. Explain how you would make your 5 standard solutions of various concentrations, including what glassware you would use to measure and prepare each solution.arrow_forward
- Predict the product and write the mechanism. CH3-CH=CH-CH2-CH3 + NBS- hv CCl4arrow_forwardHow exactly is carbon disulfide used in industry? Specifically, where does it come in during rubber or textile production and what is the chemical processes?arrow_forwardA researcher has developed a new analytical method to determine the percent by mass iron in solids. To test the new method, the researcher purchases a standard reference material sample that is 2.85% iron by mass. Analysis of the iron standard with the new method returns values of 2.75%, 2.89%, 2.77%, 2.81%, and 2.87%. Does the new method produce a result that is significantly different from the standard value at the 95% confidence level?arrow_forward
- Create a drawing of an aceral with at least 2 isopropoxy groups, and a total of 11 carbon atomsarrow_forward4. Predict the major product(s) for each of the following reactions. HBr (1 equiv.) peroxide, A a. b. NBS, peroxide, Aarrow_forwardIn addition to the separation techniques used in this lab (magnetism, evaporation, and filtering), there are other commonly used separation techniques. Some of these techniques are:Distillation – this process is used to separate components that have significantly different boiling points. The solution is heated and the lower boiling point substance is vaporized first. The vapor can be collected and condensed and the component recovered as a pure liquid. If the temperature of the mixture is then raised, the next higher boiling component will come off and be collected. Eventually only non-volatile components will be left in the original solution.Centrifugation – a centrifuge will separate mixtures based on their mass. The mixture is placed in a centrifuge tube which is then spun at a high speed. Heavier components will settle at the bottom of the tube while lighter components will be at the top. This is the technique used to separate red blood cells from blood plasma.Sieving – this is…arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305960060/9781305960060_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133109655/9781133109655_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399692/9781337399692_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)