Concept explainers
(a)
Interpretation:
The molecular formula of the compound with empirical formula
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a molecule. The molecular formula tells the exact number of atoms of each element present in a molecule.
Following are the steps to determine the molecular formula of a compound.
Step 1: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound.
Step 2: Divide the molar mass of the compound by its empirical formula mass to obtain the whole number. The formula to calculate the whole number multiple is as follows:
Step 3: Multiply the whole number with the subscript of each element present in the empirical formula. This gives the molecular formula of the compound.
(b)
Interpretation:
The molecular formula of the compound with empirical formula
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a molecule. The molecular formula tells the exact number of atoms of each element present in a molecule.
Following are the steps to determine the molecular formula of a compound.
Step 1: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound.
Step 2: Divide the molar mass of the compound by its empirical formula mass to obtain the whole number. The formula to calculate the whole number multiple is as follows:
Step 3: Multiply the whole number with the subscript of each element present in the empirical formula. This gives the molecular formula of the compound.
(c)
Interpretation:
The molecular formula of the compound with empirical formula
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a molecule. The molecular formula tells the exact number of atoms of each element present in a molecule.
Following are the steps to determine the molecular formula of a compound.
Step 1: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound.
Step 2: Divide the molar mass of the compound by its empirical formula mass to obtain the whole number. The formula to calculate the whole number multiple is as follows:
Step 3: Multiply the whole number with the subscript of each element present in the empirical formula. This gives the molecular formula of the compound.
(d)
Interpretation:
The molecular formula of the compound with empirical formula
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a molecule. The molecular formula tells the exact number of atoms of each element present in a molecule.
Following are the steps to determine the molecular formula of a compound.
Step 1: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound.
Step 2: Divide the molar mass of the compound by its empirical formula mass to obtain the whole number. The formula to calculate the whole number multiple is as follows:
Step 3: Multiply the whole number with the subscript of each element present in the empirical formula. This gives the molecular formula of the compound.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
CHEMISTRY MOLECULAR NATURE OF MATTER
- H2SO4 (cat.), H₂O 100 °C NH₂arrow_forwardX Draw the major products of the elimination reaction below. If elimination would not occur at a significant rate, check the box under the drawing area instead. ది www. Cl + OH Elimination will not occur at a significant rate. Click and drag to start drawing a structure.arrow_forwardNonearrow_forward
- 1A H 2A Li Be Use the References to access important values if needed for this question. 8A 3A 4A 5A 6A 7A He B C N O F Ne Na Mg 3B 4B 5B 6B 7B 8B-1B 2B Al Si P 1B 2B Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe * Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Rf Ha ****** Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Analyze the following reaction by looking at the electron configurations given below each box. Put a number and a symbol in each box to show the number and kind of the corresponding atom or ion. Use the smallest integers possible. cation anion + + Shell 1: 2 Shell 2: 8 Shell 3: 1 Shell 1 : 2 Shell 2 : 6 Shell 1 : 2 Shell 2: 8 Shell 1: 2 Shell 2: 8arrow_forwardNonearrow_forwardIV. Show the detailed synthesis strategy for the following compounds. a. CH3CH2CH2CH2Br CH3CH2CCH2CH2CH3arrow_forward
- Do the electrons on the OH participate in resonance with the ring through a p orbital? How many pi electrons are in the ring, 4 (from the two double bonds) or 6 (including the electrons on the O)?arrow_forwardPredict and draw the product of the following organic reaction:arrow_forwardNonearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY