Concept explainers
(a)
Interpretation:
The scene that best depicts the product mixture after decomposition of dichloro monoxide is to be determined.
Concept introduction:
A balanced chemical equation obeys the law of conservation of mass since the total mass of reactants and products are equal in a balanced chemical equation.
An element can be defined as the simplest type of matter which is composed of only one kind of atom and cannot be broken down further. The properties of all the atoms of an element are identical.
A compound is defined as a substance formed by the combination of two or more different elements in a fixed proportion via a
(b)
Interpretation:
The balanced equation for the decomposition of dichloro monoxide is to be determined.
Concept introduction:
A balanced chemical equation obeys the law of conservation of mass since the total mass of reactants and products are equal in a balanced chemical equation.
Following are the steps to write a balanced chemical equation.
Step 1: Translate the chemical statement into a skeleton equation. The reactants are the chemical substances that undergo a change, thus, write the reactants on the left side of the yield arrow. The products are the chemical substances that are produced during the chemical change, thus, write the products on the right side of the yield arrow. Put a blank before each formula while beginning the balancing process.
Step 2: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element/elements such that the number of atoms of that element(s) is the same on both sides.
Step 3: Balance the remaining atoms by placing the
Step 4: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjusting the coefficients in such a way that the smallest whole number coefficients are obtained for each element.
Step 5: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
Step 6: Specify the
(c)
Interpretation:
The number of molecules of dichloro monoxide present before the decomposition is to be determined.
Concept introduction:
Stoichiometrically equivalent molar ratios are used as conversion factors to calculate the amounts of a substance formed from produces or reacts with a specific amount of the other.
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Chapter 3 Solutions
CHEMISTRY MOLECULAR NATURE OF MATTER
- Nonearrow_forwardman Campus Depa (a) Draw the three products (constitutional isomers) obtained when 2-methyl-3-hexene reacts with water and a trace of H2SO4. Hint: one product forms as the result of a 1,2-hydride shift. (1.5 pts) This is the acid-catalyzed alkene hydration reaction.arrow_forwardNonearrow_forward
- H HgSO4, H2O H2SO4arrow_forward12. Choose the best diene and dienophile pair that would react the fastest. CN CN CO₂Et -CO₂Et .CO₂Et H3CO CO₂Et A B C D E Farrow_forward(6 pts - 2 pts each part) Although we focused our discussion on hydrogen light emission, all elements have distinctive emission spectra. Sodium (Na) is famous for its spectrum being dominated by two yellow emission lines at 589.0 and 589.6 nm, respectively. These lines result from electrons relaxing to the 3s subshell. a. What is the photon energy (in J) for one of these emission lines? Show your work. b. To what electronic transition in hydrogen is this photon energy closest to? Justify your answer-you shouldn't need to do numerical calculations. c. Consider the 3s subshell energy for Na - use 0 eV as the reference point for n=∞. What is the energy of the subshell that the electron relaxes from? Choose the same emission line that you did for part (a) and show your work.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)