Concept explainers
(a)
Interpretation:
A balanced equation for the following reaction is to be written.
Concept introduction:
In a balanced chemical equation, the total mass of reactants and products are equal in a balanced chemical equation, thus, it obeyed the law of conservation of mass.
Following are the steps to write a balanced chemical equation.
Step 1: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element(s) such that the number of atoms of that element(s) is the same on both sides.
Step 2: Balance the remaining atoms by placing the
Step 3: In a balanced
Step 4: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
(b)
Interpretation:
A balanced equation for the following reaction is to be written.
Concept introduction:
In a balanced chemical equation, the total mass of reactants and products are equal in a balanced chemical equation, thus, it obeyed the law of conservation of mass.
Following are the steps to write a balanced chemical equation.
Step 1: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element(s) such that the number of atoms of that element(s) is the same on both sides.
Step 2: Balance the remaining atoms by placing the stoichiometric coefficients before the element(s) such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it. Generally, oxygen atoms are balanced in last.
Step 3: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjusting the coefficients in such a way that the smallest whole number coefficients are obtained for each element.
Step 4: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
(c)
Interpretation:
A balanced equation for the following reaction is to be written.
Concept introduction:
In a balanced chemical equation, the total mass of reactants and products are equal in a balanced chemical equation, thus, it obeyed the law of conservation of mass.
Following are the steps to write a balanced chemical equation.
Step 1: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element(s) such that the number of atoms of that element(s) is the same on both sides.
Step 2: Balance the remaining atoms by placing the stoichiometric coefficients before the element(s) such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it. Generally, oxygen atoms are balanced in last.
Step 3: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjusting the coefficients in such a way that the smallest whole number coefficients are obtained for each element.
Step 4: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
(d)
Interpretation:
A balanced equation for the following reaction is to be written.
Concept introduction:
In a balanced chemical equation, the total mass of reactants and products are equal in a balanced chemical equation, thus, it obeyed the law of conservation of mass.
Following are the steps to write a balanced chemical equation.
Step 1: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element(s) such that the number of atoms of that element(s) is the same on both sides.
Step 2: Balance the remaining atoms by placing the stoichiometric coefficients before the element(s) such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it. Generally, oxygen atoms are balanced in last.
Step 3: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjusting the coefficients in such a way that the smallest whole number coefficients are obtained for each element.
Step 4: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 3 Solutions
CHEMISTRY MOLECULAR NATURE OF MATTER
- Don't used hand raiting and don't used Ai solutionarrow_forward* How many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4? * If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of NaOH and in the final volume (2.000 L) and assume random error.arrow_forwardYou are tasked with creating a calibration curve for the absorbance of cobalt solutions of various concentrations. You must prepare 5 standards with concentrations between 1.00 mg/L and 10.0 mg/L Co2+. You have a stock solution with a concentration of 40 mg/L Co2+ and all the standard lab glassware including transfer pipets and flasks. Explain how you would make your 5 standard solutions of various concentrations, including what glassware you would use to measure and prepare each solution.arrow_forward
- Predict the product and write the mechanism. CH3-CH=CH-CH2-CH3 + NBS- hv CCl4arrow_forwardHow exactly is carbon disulfide used in industry? Specifically, where does it come in during rubber or textile production and what is the chemical processes?arrow_forwardA researcher has developed a new analytical method to determine the percent by mass iron in solids. To test the new method, the researcher purchases a standard reference material sample that is 2.85% iron by mass. Analysis of the iron standard with the new method returns values of 2.75%, 2.89%, 2.77%, 2.81%, and 2.87%. Does the new method produce a result that is significantly different from the standard value at the 95% confidence level?arrow_forward
- Create a drawing of an aceral with at least 2 isopropoxy groups, and a total of 11 carbon atomsarrow_forward4. Predict the major product(s) for each of the following reactions. HBr (1 equiv.) peroxide, A a. b. NBS, peroxide, Aarrow_forwardIn addition to the separation techniques used in this lab (magnetism, evaporation, and filtering), there are other commonly used separation techniques. Some of these techniques are:Distillation – this process is used to separate components that have significantly different boiling points. The solution is heated and the lower boiling point substance is vaporized first. The vapor can be collected and condensed and the component recovered as a pure liquid. If the temperature of the mixture is then raised, the next higher boiling component will come off and be collected. Eventually only non-volatile components will be left in the original solution.Centrifugation – a centrifuge will separate mixtures based on their mass. The mixture is placed in a centrifuge tube which is then spun at a high speed. Heavier components will settle at the bottom of the tube while lighter components will be at the top. This is the technique used to separate red blood cells from blood plasma.Sieving – this is…arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)