Interpretation:
The number of AOs that three atoms from the second row of the periodic table would contribute in a linear molecule toward the productions of MOs is to be determined. The number of MOs that would be produced by the mixing of these valence shell AOs is to be determined.
Concept introduction:
According to Molecular Orbital Theory (MO Theory), when two atomic orbitals overlap significantly, they produce two molecular orbitals. One of these molecular orbitals is produced by overlap and mixing of two AOs that have the same phase. This MO is lower in energy than the individual AOs, and is called the bonding atomic orbital. The second MO is produced by the overlap and mixing of the AOs of opposite phases. It is higher in energy than the individual AOs and is called the antibonding MO.
In cases where the overlap produces an MO of the same energy, the resulting MO is called a non-bonding MO.
Only AOs of similar energies can interact to form MOs. In effect, this means only the AOs from the valence shells of the two atoms can form MOs. For atoms of elements from the second row, this means a total of four AOs, the lone 2s orbital, and the three 2p orbitals can form MOs.
The number of MOs formed is the same as the number of AOs that mix.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Get Ready for Organic Chemistry
- Q1. (a) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH3. Use curved arrows to show the electron movement. (b) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH4*. Use curved arrows to show the electron movement.arrow_forwardWhich is NOT the typical size of a bacteria? 1000 nm 0.001 mm 0.01 mm 1 umarrow_forwardNonearrow_forward
- Show work. don't give Ai generated solutionarrow_forwardPart II. count the expected number of signals in the 1H-NMR spectrum of these compounds HO 0 одев * Cl -cl "D"arrow_forwardPart I. Create a splitting tree diagram to predict the multiplet pattern of proton Hb in the compound below: 3 (Assume that "Jab >>> ³JbC) Ha Hb He он Ha NH2 Ha HCarrow_forward
- SH 0 iq noitzouDarrow_forwardNonearrow_forward+ HCl →? Draw the molecule on the canvas by choosing buttons from the Tools (for bonas), Atoms and Advanced Template toolbars. The single bond is active by default. + M C + H± 2D EXP. CONT. K ? L 1 H₁₂C [1] A HCN O S CH3 CH 3 CI Br HC H₂ CH CH CH3 - P Farrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning