
Concept explainers
(a)
Interpretation:
The MO resulting from the given orbital interaction is to be drawn.
Concept introduction:
When atomic orbitals (AOs) of the same phase interact, they result in a bonding molecular orbital (MO) that is lower in energy than the individual AOs.

Answer to Problem 3.1P
The MO resulting from the given orbital interaction can be drawn as follows:
Explanation of Solution
The orbital interaction shows two orbitals that are lightly shaded. Both have the same negative phase. Since the phases of both are the same, there will be constructive interference, resulting in a bonding MO of negative phase.
The MO resulting from the given orbital interaction can be drawn as follows:
The interaction between orbitals of the same phase results in the formation of a bonding MO.
(b)
Interpretation:
Whether the resulting MO is unique compared to the one shown on the right of Figure 3-6a is to be determined.
Concept introduction:
When atomic orbitals (AOs) of the same phase interact, the resulting molecular orbital (MO) has a lower energy than the separate AOs. The phases of the interacting orbitals may be both positive or both negative. The resulting stabilization (lowering of energy) is the same for both.

Answer to Problem 3.1P
The MO resulting from the interaction shown will not be unique compared to the one shown in Figure 3-6a.
Explanation of Solution
The interaction in this case is between AOs of negative phases (light shading). Since the phases are the same, the interaction will result in constructive interference, increasing the electron density between the two nuclei. This will lower the energy of the MO compared to the individual AOs. The extent to which the energy is lowered will be the same as in case of the interaction shown in Figure 3-6a. This is because the interacting orbitals are same except for a different phase.
Therefore, the MO resulting from the interaction shown will not be unique compared to the one in Figure 3-6a.
The interaction between AOs of same phase results in a bonding MO with the same stabilization, whether their phases are both positive or both negative.
Want to see more full solutions like this?
Chapter 3 Solutions
Get Ready for Organic Chemistry
- PQ-10. What is the major product of this reaction? (A) (C) 930 Me HO O=S=O O-8-CF, C 어 Me H+ OH 270 O 0-5-0 O=S=O O-S-CF CF3 2arrow_forwardPredict the major organic product(s) of the following reactions. Include stereochemistry when necessary. Write NR if no reaction, try to explain.arrow_forwardQ2: Explain why epoxides that react in an SN1 manner will not show any stereochemical inversion in the product. Q3: Rationalize why Alcohol B will react under the indicated reaction conditions, but Alcohol A will not. A ☑ OH B OH PBr3 R-Brarrow_forward
- Q1: Predict the major organic product(s) of the following reactions. Include stereochemistry when necessary. Write NR if no reaction, try to explain. 1.) LDA, THF 2.) СОН CI OH H2SO4, heat OH m...... OH 1.) PCC, CH2Cl2 2.) CH3CH2MgBr, THF 3.) H3O+ 4.) TsCl, pyr 5.) tBuOK, tBuOH 1.) SOCI 2, CHCI 3 2.) CH3CH2ONA, DMF OH 1.) HBr 2.) Mg, THF 3.) H₂CO, THE 4.) H3O+ OH NaH, THFarrow_forwardWhat is the stepwise mechanism for this reaction?arrow_forwardDraw the major product of this reactionarrow_forward
- Please provide the IUPAC name for the compound shown herearrow_forwardProblem 6-29 Identify the functional groups in the following molecules, and show the polarity of each: (a) CH3CH2C=N CH, CH, COCH (c) CH3CCH2COCH3 NH2 (e) OCH3 (b) (d) O Problem 6-30 Identify the following reactions as additions, eliminations, substitutions, or rearrangements: (a) CH3CH2Br + NaCN CH3CH2CN ( + NaBr) Acid -OH (+ H2O) catalyst (b) + (c) Heat NO2 Light + 02N-NO2 (+ HNO2) (d)arrow_forwardPredict the organic product of Y that is formed in the reaction below, and draw the skeletal ("line") structures of the missing organic product. Please include all steps & drawings & explanations.arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning

