
Concept explainers
(a)
Interpretation:
Hybridization of the indicated atom in the given molecule is to be determined.
Concept introduction:
Atomic orbitals mix and form an equal number of hybrid orbitals. The number of hybrid orbitals required by an atom in a molecule or an ion is equal to the number of electron groups in its valence shell. In case of atoms from the second row, like carbon, these are formed by mixing of one s AO and the necessary number of p AO(s).
An electron group is a lone pair or a bond. The bond, whether single, double, or triple, counts as just one electron group.
(b)
Interpretation:
Hybridization of the indicated atom in the given molecule is to be determined.
Concept introduction:
Atomic orbitals mix and form an equal number of hybrid orbitals. The number of hybrid orbitals required by an atom in a molecule or an ion is equal to the number of electron groups in its valence shell. In case of atoms from the second row, like carbon, these are formed by mixing of one s AO and the necessary number of p AO(s).
An electron group is a lone pair or a bond. The bond, whether single, double, or triple, counts as just one electron group.
(c)
Interpretation:
Hybridization of the indicated atom in the given molecule is to be determined.
Concept introduction:
Atomic orbitals mix and form an equal number of hybrid orbitals. The number of hybrid orbitals required by an atom in a molecule or an ion is equal to the number of electron groups in its valence shell. In case of atoms from the second row, like carbon, these are formed by mixing of one s AO and the necessary number of p AO(s).
An electron group is a lone pair or a bond. The bond, whether single, double, or triple, counts as just one electron group.
(d)
Interpretation:
Hybridization of the indicated atom in the given molecule is to be determined.
Concept introduction:
Atomic orbitals mix and form an equal number of hybrid orbitals. The number of hybrid orbitals required by an atom in a molecule or an ion is equal to the number of electron groups in its valence shell. In case of atoms from the second row, like carbon, these are formed by mixing of one s AO and the necessary number of p AO(s).
An electron group is a lone pair or a bond. The bond, whether single, double, or triple, counts as just one electron group.
(e)
Interpretation:
Hybridization of the indicated atom in the given molecule is to be determined.
Concept introduction:
Atomic orbitals mix and form an equal number of hybrid orbitals. The number of hybrid orbitals required by an atom in a molecule or an ion is equal to the number of electron groups in its valence shell. In case of atoms from the second row, like carbon, these are formed by mixing of one s AO and the necessary number of p AO(s).
An electron group is a lone pair or a bond. The bond, whether single, double, or triple, counts as just one electron group.

Want to see the full answer?
Check out a sample textbook solution
Chapter 3 Solutions
Get Ready for Organic Chemistry
- Draw the mechanism to make the alcohol 2-hexanol. Draw the Mechanism to make the alcohol 1-hexanol.arrow_forwardDraw the mechanism for the formation of diol by starting with 1-pentanal in... basic conditions then acidic conditions then draw the mechanism for the formation of a carboxylic acid from your product.arrow_forwardIdentify each chiral carbon as either R or S. Identify the overall carbohydrates as L or Darrow_forward
- Ethers can be formed via acid-catalyzed acetal formation. Draw the mechanism for the molecule below and ethanol.arrow_forwardHOCH, H HO CH-OH OH H OH 11 CH₂OH F II OH H H 0 + H OHarrow_forwardDraw the mechanism for the formation of diol by starting with one pen and all in... basic conditions then acidic conditions then draw the mechanism for the formation of a carboxylic acid from your product.arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning

