Fundamentals Of Engineering Thermodynamics, 9e
9th Edition
ISBN: 9781119391432
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.18P
To determine
The final temperature of refrigerant and temperature at which the tank contains only saturated vapor.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
* Your answer is incorrect.
Water contained in a piston-cylinder assembly, initially at 300°F, a quality of 80%, and a volume of 6 ft3, is heated at constant
temperature to saturated vapor.
If the rate of heat transfer is 0.3 Btu/s, determine the time, in min, for this process of the water to occur.
Kinetic and potential energy effects are negligible.
At =
i 5.217
min
A rigid, insulated vessel is divided into two compartments connected by a valve. Initially, one compartment, occupying 1.0 ft, contains
air at 50 lb/in?, 750°R, and the other, occupying 2.0 ft?, is evacuated. The valve is opened and the air is allowed to fill both volumes.
Assume the air behaves as an ideal gas and that the final state is in equilibrium.
Determine the final temperature of the air, in °R, and the amount of entropy produced, in Btu/°R.
A spring-loaded piston-cylinder device contains m= 1kg of carbon dioxide. Initially, the spring has no force on the piston and P₁ = 500kPa, T₁=150K, V₁ = 0.1m³.
1
Heat is transferred to the gas, causing the piston to rise and to compress the spring. At the state 2, T₂=900K, V₂=0.3m³. The gas is an ideal gas.
2
(1)How to determine the pressure P at the state 2?
2
O A.
O B.
OC.
O D.
P1, V1, T1
P. =
2
V T
V T
1
V T
2
V T
1
V
V
1
2
V
2
T
1
2
T
T
1
2
1
P₁
P₁
P₁
P₁
P2, V2, T2
Chapter 3 Solutions
Fundamentals Of Engineering Thermodynamics, 9e
Ch. 3 - Prob. 3.1ECh. 3 - Prob. 3.2ECh. 3 - Prob. 3.3ECh. 3 - Prob. 3.4ECh. 3 - Prob. 3.6ECh. 3 - Prob. 3.7ECh. 3 - Prob. 3.8ECh. 3 - Prob. 3.9ECh. 3 - Prob. 3.10ECh. 3 - Prob. 3.11E
Ch. 3 - Prob. 3.12ECh. 3 - Prob. 3.13ECh. 3 - Prob. 3.1CUCh. 3 - Prob. 3.2CUCh. 3 - Prob. 3.3CUCh. 3 - Prob. 3.4CUCh. 3 - Prob. 3.5CUCh. 3 - Prob. 3.6CUCh. 3 - Prob. 3.7CUCh. 3 - Prob. 3.8CUCh. 3 - Prob. 3.9CUCh. 3 - Prob. 3.10CUCh. 3 - Prob. 3.11CUCh. 3 - Prob. 3.12CUCh. 3 - Prob. 3.13CUCh. 3 - Prob. 3.14CUCh. 3 - Prob. 3.15CUCh. 3 - Prob. 3.16CUCh. 3 - Prob. 3.17CUCh. 3 - Prob. 3.18CUCh. 3 - Prob. 3.19CUCh. 3 - Prob. 3.20CUCh. 3 - Prob. 3.21CUCh. 3 - Prob. 3.22CUCh. 3 - Prob. 3.23CUCh. 3 - Prob. 3.24CUCh. 3 - Prob. 3.25CUCh. 3 - Prob. 3.26CUCh. 3 - Prob. 3.27CUCh. 3 - Prob. 3.28CUCh. 3 - Prob. 3.29CUCh. 3 - Prob. 3.30CUCh. 3 - Prob. 3.31CUCh. 3 - Prob. 3.32CUCh. 3 - Prob. 3.33CUCh. 3 - Prob. 3.34CUCh. 3 - Prob. 3.35CUCh. 3 - Prob. 3.36CUCh. 3 - Prob. 3.37CUCh. 3 - Prob. 3.38CUCh. 3 - Prob. 3.39CUCh. 3 - Prob. 3.40CUCh. 3 - Prob. 3.41CUCh. 3 - Prob. 3.42CUCh. 3 - Prob. 3.43CUCh. 3 - Prob. 3.44CUCh. 3 - Prob. 3.45CUCh. 3 - Prob. 3.46CUCh. 3 - Prob. 3.47CUCh. 3 - Prob. 3.48CUCh. 3 - Prob. 3.49CUCh. 3 - Prob. 3.50CUCh. 3 - Prob. 3.51CUCh. 3 - Prob. 3.52CUCh. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10PCh. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A closed, rigid tank contains a two-phase liquid–vapor mixture of Refrigerant 22 initially at -20°C with a quality of 50.36%. Energy transfer by heat into the tank occurs until the refrigerant is at a final pressure of 6 bar. Determine the final temperature, in °C. If the final state is in the superheated vapor region, at what temperature, in °C, does the tank contain only saturated vapor?arrow_forwardOxygen (O2) is contained within a horizontal piston-cylinder system initially O2 at 500 kPa, 200°C, and occupies a volume of 0.04 m². The gas expands according to the process described by pV!.15 = Constant, until the temperature reaches 97°C. Considering oxygen as an ideal gas and taking the specific heat of oxygen as constant at an average temperature between two states, a) Determine the final pressure (in kPa) and volume (m³). b) Determine the amount of work and heat transfer during the process, in kJ. c) Find the entropy production in this process (in kJ/K) if the boundary temperature is taken as 350°C. d) Write down the main sources of irreversibilities. e) Draw the processes on P-v and T-s diagrams.arrow_forwardGive typed full explanationarrow_forward
- 2.2) A cylinder and piston assembly contain water at 105°C and 85% quality, with a volume of one liter. The system heats up, which causes the piston to rise and encounter a linear spring. At this point the volume is 1.5 liters, the diameter of the piston is 150 mm, and the spring constant is 100 N/mm. Heating continues, so the piston compresses the spring. Determine the pressure in the cylinder when the temperature reaches 600° C. Ans = 197kPaarrow_forwardQ3) A two-phase liquid-vapor mixture of water with an initial quality of 0.25 is contained in a piston cylinder device as shown in the figure below. The mass of the piston is 40 kg, and its diameter is 10 cm. The atmospheric pressure of the surroundings is 1 bar. The initial and final position of the piston are shown in the figure. As the water is heated, the pressure inside the cylinder remains constant until the piston hits the stops. Heat transfer to the water continues until its pressure is 3 bar. Friction between the piston and the cylinderwall is negligible. Determine the total amount of heat transfer, in J. (Gravitational acceleration g= 9.81 m/s2) a) Draw the process in the P-V plot. b) Calculate the heat transfered to the water until the piston hits the stops. c) Calculate the heat required to increase the pressure of the water to 3 bar.arrow_forwardEither solve all parts or leave it unsolved ... I vll upvotearrow_forward
- T6 please help me with the answer and full solutionarrow_forward1. 2.5 liters of superheated steam at 25 bar and 400 C (v = 0.1252 m³/kg) is expanded in an engine to a pressure of 0.1 bar (v. = 14.674 m³/kg, v₁ = 0.0010102 m³/kg) when its dryness fraction is 0.9. Find the final volume of the steam.arrow_forwardWater contained in a closed, rigid tank, initially at 100 lb;/in?. 800°F, is cooled to a final state where the pressure is 20 Ib:/in?. Determine the quality at the final state and the change in specificentropy, in Btu/lb-°R, for the process. Step 1 Determine the quality at the final state. X2 = Hint Save for Later Attempts: 0 of 1 used Submit Answer Step 2 The parts of this question must be completed in order. This part will be available when you complete the part above.arrow_forward
- 2) As shown, a piston-cylinder assembly contains 5 g of air holding the piston against the stops. The air, initially at 3 bar, 600 K, is slowly cooled until the piston just begins to move downward in the cylinder. The air behaves as an ideal gas, g = 9.81 m/s², and friction is negligible. Sketch the process of the air on a p-V diagram labeled with the temperature and pressure at the end states. Also determine the heat transfer, in kJ, between the air and its surroundings. Patm =1 bar Stops Piston m= 50 kg A = 9.75 × 10-3 m² 5 g of Air T = 600 K P = 3 bararrow_forwardOne kilogram of water contained in a piston-cylinder assembly, initially at 160°C, 150 kPa, undergoes an isothermal compression process to saturated liquid. For the process, W = -471.5 kJ. Determine for the process, (a) the heat transfer, in kJ. (b) the change in entropy, in kJ/K. Show the process on a sketch of the T-s diagram.arrow_forwardA cylinder and piston assembly contains water at 105°C and 85% quality, with a volume of 1 liter. The system heats up, causing the piston to rise and encounter a linear spring. At this point the volume is 1.5 L, the piston diameter is 150 mm and the spring constant is 100 N/mm. Heating continues, so the piston compresses the spring. What is the pressure in the spring when the temperature reaches 600°C? 25%.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license