Fundamentals Of Engineering Thermodynamics, 9e
9th Edition
ISBN: 9781119391432
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.96P
a.
To determine
Pressure at the second state.
b.
To determine
The temperature at the third state.
c.
To determine
Energy transfer by heat for processes 1-2, 2-3, and 3-1, work transfer for processes 1-2, 2-3, and 3-1.
d.
To determine
Thermal efficiency of the cycle.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Topic: Ideal gas process
Instructions: Answer the following review questions and show complete solutions.
*please write legibly. Thank you
An ideal gas contained in a piston-and-cylinder device undergoes a thermodynamic cycle made up of three quasi-equilibrium processes.
Step 1-2: Adiabatic compression from 330 K and 9.35 atm to 12.58 atm
Step 2-3: Isobaric cooling
Step 3-1: Isothermal expansion
c.) Calculate Q, W, ΔU and ΔH, in J/mole,
for each step in the process and for the entire cycle. Assume that CP = (5/2) R.
d.) Is this cycle a power cycle or a refrigeration cycle? Explain. Calculate the thermal efficiency or COP of the cycle, whichever is appropriate.
Question #2
For the following processes, find the changes in h as appropriate.
The initial state pressure is p1 = 0.5 MPa. the final state is 2.
a. constant volume : v1 = 0.3 m3/kg, p2 = 0.3 MPa;
b. constant entropy : s1 = 6.3 kJ/kg K, p2 = 0.15 MPa;
c. constant volume : h1 = 2500 kJ/kg, p2 = 0.2 MPa;
d. constant enthalpy : s1 = 6.4 kJ/kg K, p2 = 0.2 MPa;
Chapter 3 Solutions
Fundamentals Of Engineering Thermodynamics, 9e
Ch. 3 - Prob. 3.1ECh. 3 - Prob. 3.2ECh. 3 - Prob. 3.3ECh. 3 - Prob. 3.4ECh. 3 - Prob. 3.6ECh. 3 - Prob. 3.7ECh. 3 - Prob. 3.8ECh. 3 - Prob. 3.9ECh. 3 - Prob. 3.10ECh. 3 - Prob. 3.11E
Ch. 3 - Prob. 3.12ECh. 3 - Prob. 3.13ECh. 3 - Prob. 3.1CUCh. 3 - Prob. 3.2CUCh. 3 - Prob. 3.3CUCh. 3 - Prob. 3.4CUCh. 3 - Prob. 3.5CUCh. 3 - Prob. 3.6CUCh. 3 - Prob. 3.7CUCh. 3 - Prob. 3.8CUCh. 3 - Prob. 3.9CUCh. 3 - Prob. 3.10CUCh. 3 - Prob. 3.11CUCh. 3 - Prob. 3.12CUCh. 3 - Prob. 3.13CUCh. 3 - Prob. 3.14CUCh. 3 - Prob. 3.15CUCh. 3 - Prob. 3.16CUCh. 3 - Prob. 3.17CUCh. 3 - Prob. 3.18CUCh. 3 - Prob. 3.19CUCh. 3 - Prob. 3.20CUCh. 3 - Prob. 3.21CUCh. 3 - Prob. 3.22CUCh. 3 - Prob. 3.23CUCh. 3 - Prob. 3.24CUCh. 3 - Prob. 3.25CUCh. 3 - Prob. 3.26CUCh. 3 - Prob. 3.27CUCh. 3 - Prob. 3.28CUCh. 3 - Prob. 3.29CUCh. 3 - Prob. 3.30CUCh. 3 - Prob. 3.31CUCh. 3 - Prob. 3.32CUCh. 3 - Prob. 3.33CUCh. 3 - Prob. 3.34CUCh. 3 - Prob. 3.35CUCh. 3 - Prob. 3.36CUCh. 3 - Prob. 3.37CUCh. 3 - Prob. 3.38CUCh. 3 - Prob. 3.39CUCh. 3 - Prob. 3.40CUCh. 3 - Prob. 3.41CUCh. 3 - Prob. 3.42CUCh. 3 - Prob. 3.43CUCh. 3 - Prob. 3.44CUCh. 3 - Prob. 3.45CUCh. 3 - Prob. 3.46CUCh. 3 - Prob. 3.47CUCh. 3 - Prob. 3.48CUCh. 3 - Prob. 3.49CUCh. 3 - Prob. 3.50CUCh. 3 - Prob. 3.51CUCh. 3 - Prob. 3.52CUCh. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10PCh. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A p-V diagram of hypothetical thermodynamic cycle with 1.24 mol of Ne (assume perfect gas) as the thermodynamic fluid initially at 330.15 K and 20.0 atm shown in the graph. Note, Cv,m = 1.5 R, Cp,m = 12 J K/mol Determine q, w, and dS for each process in the cycle and for the whole cycle. If this thermodynamical cycle is used as basis for a heat engine, what would be its efficiency? Use |w| / |q| formula.arrow_forwardA rigid, well-insulated tank contains air. A partition in the tank separates 12 ft^3 of air at 14.7 lbf/in2, 40◦F (left side of the tank) from 10 ft^3 of air at 50 lbf/in2, 200◦F(right side of the tank), as illustrated in the figure. The partition is removed and air from the two sides mix until a final equilibrium state is attained. The air can be modeled as an ideal gas, and kinetic and potential energy effects can be neglected. (Note: values for the left side of the tank are denoted with a subscript L, and values for the right side of the tank are denoted with a subscript R). a) Determine the final temperature (in F) b) Determine the final pressure (in lbf/in^2) c) Calculate the amount of entropy produced, in Btu/R d) Is this mixing process reversible or irreversible?arrow_forwardAn ideal gas,Cp=5/2 R and Cv=3/2 R, is changed from P1=1 bar and V1=12m^3 to P2=12 bar and V2=1m^3 by the following mechanically reversible process. a)Isothermal compression b)Adiabatic compression followed by cooling at constant pressure c)Adiabatic compression followed by cooling at constant volume. Calculate Q,W,U and H in each case and find the total Q,W,H and U . Answers should be in kJ. SOLVE STEP BY STEP PLEASEarrow_forward
- Identify the Enthalpy of State 1 to 4 (h1, h2, h3 and h4)arrow_forwardA closed frictionless piston-cylinder device contains 0.365 kmol of an ideal gas known as Minesium (MW=38.0 g/mol, C, = 4R). The device undergoes a three-state, three process cycle. Initially the gas is at 205 °C and 350.0 kPa (State 1). It is isothermally compressed to a pressure of 550.0 kPa (State 2). From State 2, the pressure in the piston-cylinder device is reduced to 350.0 kPa via an isochoric process (State 3). Finally, the gas is expanded isobarically to the initial State 1 conditions. What is the work from State 1 to State 2, W12? kJ What is the work from State 2 to State 3, W23? kJ What is the work from State 3 to State 1, W31? kJ What is the total heat for this three step cycle, Qtot? kJarrow_forwardOne-quarter Ibmol of oxygen gas (O2) undergoes a process from P1 = 20 lbf/in?, T1 = 500°R to p2 = 150 lbę/in2. For the process W = -500 Btu and Q = -177.5 Btu. Assume the oxygen behaves as an ideal gas. Determine T2, in °R, and the change in entropy, in Btu/°R.arrow_forward
- QUESTION 19 The mass of CO2 is 0.066 kg in a system (with molar mass 44 kg/kmol), occupying a volume of 0.026 m³ at 0.9 bar is compressed reversibly until the pressure is 5.33 bar. If the molar (universal) gas constant as 8.3145 kJ/kmol K, calculate the final temperature (in C) when the process is isothermal. Answer to 3 d.p. No need for unitarrow_forward3.21. The state of an ideal gas with Cp = (5/2)R is changed from P=1 bar and V = 12 m to P- 12 bar and V =1 m' by the following mechanically reversible processes: (a) Isothermal compression. (b) Adiabatic compression followed by cooling at constant pressure. atni (c) Adiabatic compression followed by cooling at constant volume.ro (d) Heating at constant volume followed by cooling at constant pressure. (e) Cooling at constant pressure followed by heating at constant volume. ad y Calculate Q. W, AU, and AH for each of these processes, and sketch the paths of all processes on a single PV diagram. owlearrow_forward2. thermodynamicsarrow_forward
- What is the efficiency of this cycle? O 0.42 0.58 0.28 1.00 O 0.72arrow_forward3.55-A system consisting of 1 kg of H,O undergoes a power cycle composed of the following processes: Process 1-2: Constant-pressure heating at 10 bar from saturated vapor. Process 2-3: Constant-volume cooling to P3 = 5 bar, %3D T3 = 160°C. Process 3-4: Isothermal compression with Q34 = -815.8 kJ. %3D Process 4–1: Constant-volume heating. Sketch the cycle on T-v and p-v diagrams. Neglecting kinetic and potential energy effects, determine the thermal efficiency.arrow_forwardQ6: n moles of CH4, considered as an ideal gas, are taken through the following thermodynamic cycle: A→B: isovolumetric transformation from pressure PA and volume VA to pressure PB=2 PA B→C: isobaric expansion from volume VA to volume VC=3 VA C→D: isovolumetric transformation down to pressure PD=PA D→A: isobaric compression a. Sketch the (ABCD) cycle on a P-V diagram and determine all the unknown pressures, volumes and temperatures at points A, B, C and D in terms of n, R, PA and VA. b. Determine the net mechanical work done by the gas over the entire cycle. c. Determine the heat absorbed by the gas over each leg of the cycle.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY