ELEM.PRIN.OF CHEMICAL...ABRIDGED (LL)
ELEM.PRIN.OF CHEMICAL...ABRIDGED (LL)
4th Edition
ISBN: 9781119540632
Author: FELDER
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 3, Problem 3.17P
Interpretation Introduction

(a)

Interpretation:

Plot a calibration curve using given data.

Concept introduction:

100 g of pure water and different weighed quantities of amino acid L-isoleucine (Ile) were added to six flasks to prepare aqueous solutions. Then the densities of solutions were measured using densitometer, with the following results.

r (g Ile/100 g H2 O) 0 0.8821 1.7683 2.6412 3.4093 4.2064
Ρ (g solution /cm3) 0.98803 0.98984 0.99148 0.99297 0.99439 0.9958

A calibration curve, r=aρ+b can be drawn using above data. Where, a = slope, b = intercept, Ρ = density and r = concentration

Interpretation Introduction

(b)

Interpretation:

Using the calibration curve calculate the mass flow rate of the given stream.

Concept introduction:

100 g of pure water and different weighed quantities of amino acid L-isoleucine (Ile) were added to six flasks to prepare aqueous solutions. Then the densities of solutions were measured using densitometer. Using observed data, a calibration curve was drawn and given by the formula,

r=545.5ρ539.03

Where, Ρ = density and r = concentration

In addition, it is given as,

Density = 0.994 g / cm3, Volumetric flow rate = 150 L/h

Interpretation Introduction

(c)

Interpretation:

If the thermocouple is poorly calibrated. Would the mass flowrate estimated in section (b) be too high or too low?

Concept introduction:

100 g of pure water and different weighed quantities of amino acid L-isoleucine (Ile) were added to six flasks to prepare aqueous solutions. Then the densities of solutions were measured using densitometer. Using observed data, a calibration curve was drawn and given by the formula,

r=545.5ρ539.03

Where, Ρ = density and r = concentration

Blurred answer
Students have asked these similar questions
Problem 1) A fractional factorial design has been used to study on the effect of 3 parameters including adsorbent concentration (300 and 500 ppm), pH value (4 and 10) and reaction time (6 and 12 hours) on the adsorption capacity of a composite for removing of methylene blue from a wastewater. If the results obtained for two repetitions of the tests are according to the following table, it is desirable: A) Design Resolution Y₁ Y₂ Run (mg/g) (mg/g) B) Drawing graphs of the effect of each parameter on the adsorption capacity 1 28 26 2 36 34 C) Analysis of interactions 3 18 20 D) Calculate the effects percentage of each parameter and error 4 32 30 E) Determining the optimum conditions to achieve the highest adsorption capacity
Thermophysical Properties of Petroleum Fractions and Crude Ofls 67 3.4. A gas oil has the following TBP distillation data Volume % TBP (°C) 0 216 10 243 30 268 50 284 70 304 90 318 95 327 100 334 It also has an average boiling point of 280 °C and an average density of 0.850 g/cm³. (a) Split this gas oil fraction into five pseudo-components. Calculate T., Pc and w for each pseudo-component. (b) Calculate T, Pc and w for the whole gas oil fraction. (c) Calculate the enthalpy of this gas oil fraction at 400 °C using the Lee- Kessler correlation with a reference state of ideal gas at 273.15 K.
3.3. Use the following crude assay data with crude API of 36 to estimate cut vol%, critical properties and molecular weight for Light Naphtha (90- 190 °F) and Kerosene (380-520 °F). In addition, calculate the fractions of paraffins, naphthenes and aromatics in the two cuts. ASTM D86 (°F) Volume % Cum vol% SG 86 0.0 0.0 122 0.5 0.5 0.6700 167 1.2 1.7 0.6750 212 1.6 3.3 0.7220 257 2.7 6.0 0.7480 302 3.1 9.1 0.7650 347 3.9 13.0 0.7780 392 4.7 17.7 0.7890 437 5.7 23.4 0.8010 482 8.0 31.4 0.8140 527 10.7 42.1 0.8250 584 5.0 47.1 0.8450 636 10.0 57.1 0.8540 689 7.8 64.9 0.8630 742 7.0 71.9 0.8640 794 6.5 78.4 0.8890 20.8 99.2 0.9310

Chapter 3 Solutions

ELEM.PRIN.OF CHEMICAL...ABRIDGED (LL)

Knowledge Booster
Background pattern image
Chemical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The