A recent college graduate is planning to take the first three actuarial examinations in the coming summer. She will take the first actuarial exam in June. If she passes that exam, then she will take the second exam in july, and if she also passes that one, then she will take the third exam in September. If she tails an exam, then she is not allowed to take any others. The probability that she passes the first exam is .9. If she passes the first exam, then the conditional probability that she passes the second one is .8, and if she passes both the first and the second exams, then the conditional probability that she passes the third exam is .7. a. What is the probability that she passes all three exams? b. Given that she did not pass all three exams, what is the conditional probability that she tailed the second exam?
A recent college graduate is planning to take the first three actuarial examinations in the coming summer. She will take the first actuarial exam in June. If she passes that exam, then she will take the second exam in july, and if she also passes that one, then she will take the third exam in September. If she tails an exam, then she is not allowed to take any others. The probability that she passes the first exam is .9. If she passes the first exam, then the conditional probability that she passes the second one is .8, and if she passes both the first and the second exams, then the conditional probability that she passes the third exam is .7. a. What is the probability that she passes all three exams? b. Given that she did not pass all three exams, what is the conditional probability that she tailed the second exam?
A recent college graduate is planning to take the first three actuarial examinations in the coming summer. She will take the first actuarial exam in June. If she passes that exam, then she will take the second exam in july, and if she also passes that one, then she will take the third exam in September. If she tails an exam, then she is not allowed to take any others. The probability that she passes the first exam is .9. If she passes the first exam, then the conditional probability that she passes the second one is .8, and if she passes both the first and the second exams, then the conditional probability that she passes the third exam is .7.
a. What is the probability that she passes all three exams?
b. Given that she did not pass all three exams, what is the conditional probability that she tailed the second exam?
2) Suppose we select two values x and y independently from the uniform distribution on
[0,1]. What is the probability that xy
1
2
100 identical balls are rolling along a straight line. They all have speed equal to v, but some of them might move in opposite directions. When two of them collide they immediately switch their direction and keep the speed v. What is the maximum number of collisions that can happen?
Let f(w) be a function of vector w Є RN, i.e. f(w) = 1+e Determine the first derivative and matrix of second derivatives off with respect to w.
Let A Є RN*N be a symmetric, positive definite matrix and bЄ RN a vector. If x ER, evaluate the integral Z(A,b) = e¯xAx+bx dx as a function of A and b.
John throws a fair die with faces labelled 1 to 6. ⚫ He gains 10 points if the die shows 1. ⚫ He gains 1 point if the die shows 2 or 4. • No points are allocated otherwise. Let X be the random variable describing John's gain at each throw. Determine the variance of X.
Female
Male
Totals
Less than High School
Diploma
0.077
0.110
0.187
High School Diploma
0.154
0.201
0.355
Some College/University
0.141
0.129
0.270
College/University Graduate
0.092
0.096
0.188
Totals
0.464
0.536
1.000
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Bayes' Theorem 1: Introduction and conditional probability; Author: Dr Nic's Maths and Stats;https://www.youtube.com/watch?v=lQVkXfJ-rpU;License: Standard YouTube License, CC-BY
What is Conditional Probability | Bayes Theorem | Conditional Probability Examples & Problems; Author: ACADGILD;https://www.youtube.com/watch?v=MxOny_1y2Q4;License: Standard YouTube License, CC-BY
Bayes' Theorem of Probability With Tree Diagrams & Venn Diagrams; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=OByl4RJxnKA;License: Standard YouTube License, CC-BY