(a)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Dicalcium phosphate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Phosphorous is given in the form of Dicalcium phosphate.
(b)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Magnesium sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Magnesium is given in the form of Magnesium sulfate.
(c)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Potassium chloride.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Potassium is given in the form of Potassium chloride.
(d)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Ferrous sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Iron is given in the form of Ferrous sulfate.
(e)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Calcium carbonate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Calcium is given in the form of Calcium carbonate.
(f)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Zinc aspartate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Zinc is given in the form of Zinc aspartate.
(g)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Manganese sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Manganese is given in the form of Manganese sulfate.
(h)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Titanium dioxide.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Titanium is given in the form of Titanium dioxide.
(i)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Horsetail leaf extract for silicon.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Silicon is given in the form of Horsetail leaf extract for silicon.
(j)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Copper sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Copper is given in the form of Copper sulfate.
(k)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Boron citrate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Boron is given in the form of Boron citrate.
(l)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Molybdenum Amino acid Chelate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Molybdenum is given in the form of Molybdenum Amino acid Chelate.
(m)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Chromium picolinate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Chromium is given in the form of Chromium picolinate.
(n)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Potassium iodide.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Iodine is given in the form of Potassium iodide.
(o)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Sodium selenate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Selenium is given in the form of Sodium selenate.
(p)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Vanadyl sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Vanadium is given in the form of Vanadyl sulfate.
(q)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Nickel sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Nickel is given in the form of Nickel sulfate.
(r)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Stannous chloride.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Tin is given in the form of stannous chloride.
Want to see more full solutions like this?
Chapter 3 Solutions
Bundle: Introduction to General, Organic and Biochemistry, 11th + OWLv2, 4 terms (24 months) Printed Access Card
- U Consider the following graph containing line plots for the moles of Product 1 versus time (minutes) and the moles of Product 2 versus time in minutes. Choose all of the key terms/phrases that describe the plots on this graph. Check all that apply. ▸ View Available Hint(s) Slope is zero. More of Product 1 is obtained in 12 minutes. Slope has units of moles per minute. plot of minutes versus moles positive relationship between moles and minutes negative relationship between moles and minutes Slope has units of minutes per moles. More of Product 2 is obtained in 12 minutes. can be described using equation y = mx + b plot of moles versus minutes y-intercept is at (12,10). y-intercept is at the origin. Product Amount (moles) Product 1 B (12,10) Product 2 E 1 Time (minutes) A (12,5)arrow_forwardSolve for x, where M is molar and s is seconds. x = (9.0 × 10³ M−². s¯¹) (0.26 M)³ Enter the answer. Include units. Use the exponent key above the answer box to indicate any exponent on your units. ▸ View Available Hint(s) ΜΑ 0 ? Units Valuearrow_forwardLearning Goal: This question reviews the format for writing an element's written symbol. Recall that written symbols have a particular format. Written symbols use a form like this: 35 Cl 17 In this form the mass number, 35, is a stacked superscript. The atomic number, 17, is a stacked subscript. "CI" is the chemical symbol for the element chlorine. A general way to show this form is: It is also correct to write symbols by leaving off the atomic number, as in the following form: atomic number mass number Symbol 35 Cl or mass number Symbol This is because if you write the element symbol, such as Cl, you know the atomic number is 17 from that symbol. Remember that the atomic number, or number of protons in the nucleus, is what defines the element. Thus, if 17 protons are in the nucleus, the element can only be chlorine. Sometimes you will only see 35 C1, where the atomic number is not written. Watch this video to review the format for written symbols. In the following table each column…arrow_forward
- need help please and thanks dont understand only need help with C-F Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7). Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%. Part B - Compare difference in free energy to the thermal…arrow_forwardneed help please and thanks dont understand only need help with C-F Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7). Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%. Part B - Compare difference in free energy to the thermal…arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- need help please and thanks dont understand a-b Learning Goal: As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT. The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7). Part A - Difference in binding free eenergies Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol. The margin of error is 2%. Part B - Compare difference in free energy to the thermal energy Divide the…arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Can you tell me if my answers are correctarrow_forwardBunsenite (NiO) crystallizes like common salt (NaCl), with a lattice parameter a = 4.177 Å. A sample of this mineral that has Schottky defects that are not supposed to decrease the volume of the material has a density of 6.67 g/cm3. What percentage of NiO molecules is missing? (Data: atomic weight of Ni: 58.7; atomic weight of O: 16).arrow_forwardA sample of aluminum (face-centered cubic - FCC) has a density of 2.695 mg/m3 and a lattice parameter of 4.04958 Å. Calculate the fraction of vacancies in the structure. (Atomic weight of aluminum: 26.981).arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning