(a)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Dicalcium phosphate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Phosphorous is given in the form of Dicalcium phosphate.
(b)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Magnesium sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Magnesium is given in the form of Magnesium sulfate.
(c)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Potassium chloride.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Potassium is given in the form of Potassium chloride.
(d)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Ferrous sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Iron is given in the form of Ferrous sulfate.
(e)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Calcium carbonate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Calcium is given in the form of Calcium carbonate.
(f)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Zinc aspartate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Zinc is given in the form of Zinc aspartate.
(g)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Manganese sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Manganese is given in the form of Manganese sulfate.
(h)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Titanium dioxide.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Titanium is given in the form of Titanium dioxide.
(i)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Horsetail leaf extract for silicon.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Silicon is given in the form of Horsetail leaf extract for silicon.
(j)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Copper sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Copper is given in the form of Copper sulfate.
(k)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Boron citrate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Boron is given in the form of Boron citrate.
(l)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Molybdenum Amino acid Chelate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Molybdenum is given in the form of Molybdenum Amino acid Chelate.
(m)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Chromium picolinate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Chromium is given in the form of Chromium picolinate.
(n)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Potassium iodide.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Iodine is given in the form of Potassium iodide.
(o)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Sodium selenate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Selenium is given in the form of Sodium selenate.
(p)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Vanadyl sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Vanadium is given in the form of Vanadyl sulfate.
(q)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Nickel sulfate.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Nickel is given in the form of Nickel sulfate.
(r)
Interpretation:
To determine the form of each trace mineral present in multivitamin formulations.
Concept Introduction:
Each trace mineral is extracted from a particular source. The source will be a mixture and the trace mineral will be in purest form.
Answer to Problem 3.116P
Stannous chloride.
Explanation of Solution
All trace elements are present in various forms. These forms when administered into body release the elements which are then used by the body.
Tin is given in the form of stannous chloride.
Want to see more full solutions like this?
Chapter 3 Solutions
Bundle: Introduction to General, Organic and Biochemistry, 11th + OWLv2, 4 terms (24 months) Printed Access Card
- 3-41 Describe the structure of sodium chloride in the solid state.arrow_forward2-98 Explain how the ionization energy of atoms changes when proceeding down a group of the Periodic Table and explain why this change occurs.arrow_forward2-97 Explain why the Ca3+ ion is not found in chemical compounds.arrow_forward
- 3-48 Potassium chloride and potassium bicarbonate are used as potassium dietary supplements. Write the formula of each compound.arrow_forward3-23 Predict which ions are stable: (a) (b) (c) (d) (e) (f)arrow_forward3-87 Consider the molecule boron trffluoride, BF3. (a) Write a Lewis structure for BF3. (b) Predict the FBF bond angles using the VSEPR model. (c) Does BF3 have polar bonds? Is it a polar molecule?arrow_forward
- 3-109 Until several years ago, the two chlorofluorocarbons (CFCs) most widely used as heat transfer media in refrigeration systems were Freon-li (trichloro fluoromethane, CC13F) and Freon-12 (dichiorodi fluoromethane, CCl2F2). Draw a three-dimensional representation of each molecule and indicate the Direction of it.s polarity.arrow_forward3-119 Perchloroethylene, which is a liquid at room temperature, is one of the most widely used solvents for commercial dry cleaning. It is sold for this purpose under several trade names, including Perciene®. Does this molecule have polar bonds? Is it a polar molecule? Does it have a dipole?arrow_forward3-78 Nitrous oxide, N20, laughing gas, is a colorless, nontoxic, tasteless, and odorless gas. It is used as an inhalation anesthetic in dental and other surgeries. Because nitrous oxide is soluble in vegetable oils (fats), it is used commercially as a propellant in whipped toppings Nitrous oxide dissolves in fats. The gas is added under pressure to cans of whipped topping. When the valve is opened, the gas expands, thus expanding (whipping) the topping and forcing it out of the can. (a) How many valence electrons are present in a molecule of N20? (b) Write two equivalent contributing structures for this molecule. The connectivity in nitrous oxide is NNO. (c) Explain why the following is not an acceptable contributing structure:arrow_forward
- 19 of 44 > © Macmillan Learning In the given three-dimensional molecular structure, the differently colored spheres represent different types of atoms. Write a molecular formula for this molecule. molecular formula: 4 R % 67 68 5 1 SPECIAL xº (g) ΔΣΩ λμπ X₁ X () 6 [] (s) Y (1) (aq) →>>> MacBook Pro The 11 7 U t CLR 8 K →>> 9 Rotate X You 9 Rotate Y ( 0 ☐C □H D Rotate Z 0 Zoom In P O Zoom Out Attempt A Label Atoms Carrow_forwardAnswer true or false. (a) The name of a binary ionic compound consists of the name of the positive ion followed by the name of the negative ion. (b) In naming binary ionic compounds, it is necessary to state the number of each ion present in the compound. (c) The formula of aluminum oxide is Al2 O3 . (d) Both copper(II) oxide and cupric oxide are acceptable names for CuO. (e) The systematic name for Fe2 O3 is iron(II) oxide. (f) The systematic name for FeCO3 is iron carbonate. (g) The systematic name for NaH2PO4 is sodium di- hydrogen phosphate. (h) The systematic name for K2HPO4 is dipotassium hydrogen phosphate. (i) The systematic name for Na2O is sodium oxide. (j) The systematic name for PCl3 is potassium chloride. (k) The formula of ammonium carbonate is NH4CO3. 39. (a) A covalent bond is formed between two atoms whose difference in electronegativity is less than 1.9. (b) If the difference in electronegativity between two atoms is zero (they have identical electronegativ- ities),…arrow_forwardWrite the chemical formula for the ionic compound formed from each pair of ions.(a) Mg2+ and I-(b) Na+ and O2-arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning