
Synonyms:
When more than one name is assigned to same attribute, the attribute names are referred as “synonyms’. It exists when the same attribute has more than one name.
Example:
Suppose in table STUDENT, one of the attribute names is “STU_NUM” which displays the student registration number. Also, another attribute is “STU_ID” which also displays the student registration number. Then the attribute names are named as “Synonyms”.
Primary Key:
A Primary Key in a
Example:
Students in Universities are assigned a unique registration number.
Therefore, in a STUDENT database table, the attribute “reg_no” acts as primary key.
Foreign Key:
Foreign Key is a column in a relational database table which provides a relation between two tables. It provides a cross reference between tables by pointing to primary key of another table.
Example:
In STUDENT database table, the attribute “reg_no” acts as primary key and in COURSE database table in which the student selects his or her course, the same “reg_no” acts as foreign key for the STUDENT table.
Many to One Relationship:
When more than one record in a database table is associated with only one record in another table, the relationship between the two tables is referred as many to one relationship. It is also represented as M: 1 relationship.
One to Many Relationship:
When one record in a database table is associated with more than one record in another table, the relationship between the two tables is referred as one to many relationship. It is also represented as1: M relationship. This is the opposite of many to one relationship.
One to One Relationship:
When one record in a database table is associated with one record in another table, the relationship between the two tables is referred as one to one relationship. It is also represented as1: 1relationship.
RELATIONAL DIAGRAM:
Relational Diagram is also known as Entity Relational Diagram. It is used to define the conceptual view of the database as viewed by the end user. It is used to depict the database’s main components: entities, relationships and attributes. It describes how data is related to each other.

Explanation of Solution
Given database tables:
Table Name: CHARTER
CHAR_TRIP | CHAR_DATE | CHAR_PILOT | CHAR_COPILOT | AC_NUMBER | CHAR_DESTINATION | CHAR_DISTANCE | CHAR_HOURS_FLOWN | CHA_HOURS_WAIT | CHAR_FUEL_GALLONS | CHAR_OIL_QTS | CUS_CODE |
10001 | 05-Feb-18 | 104 | 2289L | ATL | 936.0 | 5.1 | 2.2 | 354.1 | 1 | 10011 | |
10002 | 05-Feb-18 | 101 | 2778V | BNA | 320.0 | 1.6 | 0.0 | 72.6 | 0 | 10016 | |
10003 | 05-Feb-18 | 105 | 109 | 4278Y | GNV | 1574.0 | 7.8 | 0.0 | 339.8 | 2 | 10014 |
10004 | 06-Feb-18 | 106 | 1484P | STL | 472.0 | 2.9 | 4.9 | 97.2 | 1 | 10019 | |
10005 | 06-Feb-18 | 101 | 2289L | ATL | 1023.0 | 5.7 | 3.5 | 397.7 | 2 | 10011 | |
10006 | 06-Feb-18 | 109 | 4278Y | STL | 472.0 | 2.6 | 5.2 | 117.1 | 0 | 10017 | |
10007 | 06-Feb-18 | 104 | 105 | 2778V | GNV | 1574.0 | 7.9 | 0.0 | 348.4 | 2 | 10012 |
10008 | 07-Feb-18 | 106 | 1484P | TYS | 644.0 | 4.1 | 0.0 | 140.6 | 1 | 10014 | |
10009 | 07-Feb-18 | 105 | 2289L | GNV | 1574.0 | 6.6 | 23.4 | 459.9 | 0 | 10017 | |
10010 | 07-Feb-18 | 109 | 4278Y | ATL | 998.0 | 6.2 | 3.2 | 279.7 | 0 | 10016 | |
10011 | 07-Feb-18 | 101 | 104 | 1484P | BNA | 352.0 | 1.9 | 5.3 | 66.4 | 1 | 10012 |
10012 | 08-Feb-18 | 101 | 2289L | MOB | 884.0 | 4.8 | 4.2 | 215.1 | 0 | 10010 | |
10013 | 08-Feb-18 | 105 | 4278Y | TYS | 644.0 | 3.9 | 4.5 | 174.3 | 1 | 10011 | |
10014 | 09-Feb-18 | 106 | 4278V | ATL | 936.0 | 6.1 | 2.1 | 302.6 | 0 | 10017 | |
10015 | 09-Feb-18 | 104 | 101 | 2289L | GNV | 1645.0 | 6.7 | 0.0 | 459.5 | 2 | 10016 |
10016 | 09-Feb-18 | 109 | 105 | 2778V | MQY | 312.0 | 1.5 | 0.0 | 67.2 | 0 | 10011 |
10017 | 10-Feb-18 | 101 | 1484P | STL | 508.0 | 3.1 | 0.0 | 105.5 | 0 | 10014 | |
10018 | 10-Feb-18 | 105 | 104 | 4278Y | TYS | 644.0 | 3.8 | 4.5 | 167.4 | 0 | 10017 |
Table Name: AIRCRAFT
AC_NUMBER | MODE-CODE | AC_TTAF | AC_TTEL | AC_TTER |
1484P | PA23-250 | 1833.1 | 1833.1 | 101.8 |
2289L | C-90A | 4243.8 | 768.9 | 1123.4 |
2778V | PA31-350 | 7992.9 | 1513.1 | 789.5 |
4278Y | PA31-350 | 2147.3 | 622.1 | 243.2 |
Table Name: MODEL
MOD_CODE | MOD_MANUFACTER | MOD_NAME | MOD_SEATS | MOD_CHG_MILE |
B200 | Beechcraft | Super KingAir | 10 | 1.93 |
C-90A | Beechcraft | KingAir | 8 | 2.67 |
PA23-250 | Piper | Aztec | 6 | 1.93 |
PA31-350 | Piper | Navajao Chiettan | 10 | 2.35 |
Table Name: PILOT
EMP_NUM | PIL_LICENSE | PIL_RATINGS | PIL_MED_TYPE | PIL_MED_DATE | PIL_PTI35_DATE |
101 | ATP | ATP/SEL/MEL/Instr/CFII | 1 | 20-Jan-18 | 11-Jan-18 |
104 | ATP | ATP/SEL/MEL/Instr | 1 | 18-Dec-17 | 17-Jan-18 |
105 | COM | COMM/SEL/MEL/Instr/CFI | 2 | 05-Jan-18 | 02-Jan-18 |
106 | COM | COMM/SEL/MEL/Instr | 2 | 10-Dec-17 | 02-Feb-18 |
109 | COM | ATP/SEL/MEL/SES/Instr/CFII | 1 | 22-Jan-18 | 15-Jan-18 |
Table Name: EMPLOYEE
EMP_NUM | EMP_TITLE | EMP-LNAME | EMP_FNAME | EMP_INITIAL | EMP_CODE | EMP_HIRE_DATE |
100 | Mr. | Kolrnycz | George | D | 15-Jun-62 | 15-Mar-08 |
101 | Ms. | Lewis | Rhonda | G | 19-Mar-85 | 25-Apr-06 |
102 | Mr. | Vandam | Rhett | 14-Nov-78 | 18-May-13 | |
103 | Ms. | Jones | Anne | M | 11-May-94 | 26-Jul-17 |
104 | Mr. | Lange | John | P | 12-Jul-91 | 20-Aug-10 |
105 | Mr. | Williams | Robert | D | 14-Mar-95 | 19-Jun-17 |
106 | Mrs. | Duzak | Jeanine | K | 12-Feb-88 | 13-Mar-18 |
107 | Mr. | Deante | George | D | 01-May-95 | 02-Jul-16 |
108 | Mr. | Wiesanbach | Paul | R | 14-Feb-86 | 03-Jun-13 |
109 | Ms. | Travis | Elizabeth | K | 18-Jun-81 | 14-Feb-16 |
110 | Mrs. | Genkazi | Lieghla | W | 19-May-90 | 29-Jun-10 |
Table Name: EMPLOYEE
CUS_CODE | CUS_LNAME | CUS_FNAME | CUS_INITIAL | CUS_AREACODE | CUS_PHONE | CUS_BALANCE |
10010 | Ramas | Alfred | A | 615 | 844-2573 | 0.00 |
10011 | Dunne | Leona | K | 713 | 894-1293 | 0.00 |
10012 | Smith | Kathy | W | 615 | 894-2285 | 896.54 |
10013 | Owolski | Paul | F | 615 | 894-2180 | 1285.19 |
10014 | Orlando | Myron | 615 | 222-1672 | 673.21 | |
10015 | OBrian | Amy | B | 713 | 442-3381 | 1014.86 |
10016 | Brown | James | G | 615 | 297-1228 | 0.00 |
10017 | Williams | George | 615 | 290-2556 | 0.00 | |
10018 | Fariss | Anne | G | 713 | 382-7185 | 0.00 |
10019 | Smith | Olette | K | 615 | 297-3809 | 453.98 |
PRIMARY KEY in the above tables:
For Table Name: CHARTER:
Primary Key: CHAR_TRIP
“CHAR_TRIP” acts as primary key of the table because the attribute “CHAR_TRIP” is a unique ID that is assigned to every individual trip by the charter plane. It also uniquely identifies every other row present in the database table.
For Table Name: AIRCRAFT:
Primary Key: AC_NUMBER
“AC_NUMBER” acts as primary key of the table because the attribute “AC_NUMBER” is a unique number that is assigned to every individual charter plane and is used to distinguish among them. It also uniquely identifies every other row present in the database table.
For Table Name: MODEL:
Primary Key: MOD_CODE
“MOD_CODE” acts as primary key of the table because the attribute “MOC_CODE” is a unique number that is assigned to every individual model of the charter plane and is used to distinguish models among them. It also uniquely identifies every other row present in the database table.
For Table Name: PILOT:
Primary Key: EMP_NUM
“EMP_NUM” acts as primary key of the table because the attribute “EMP_NUM” is a unique number that is assigned to every pilot that flies an aircraft. It also uniquely identifies every other row present in the database table.
For Table Name: EMPLOYEE:
Primary Key: EMP_NUM
“EMP_NUM” acts as primary key of the table because the attribute “EMP_NUM” is a unique number or ID that is assigned to every employee that works in the airline. It also uniquely identifies every other row present in the database table.
For Table Name: CUSTOMER:
Primary Key: CUS_CODE
“CUS_CODE” acts as primary key of the table because the attribute “CUS_CODE” is a unique code that is assigned to every customer that books a flight with the airline. It also uniquely identifies every other row present in the database table.
FOREIGN KEY in the above tables:
For Table Name: CHARTER:
Primary Key: CHAR_PILOT,CHAR_COPILOT,AC_NUMBER,CUS_CODE
“CHAR_PILOT” acts as foreign key of the table because the attribute “CHAR_PILOT” is also present in the table PILOT and it references PILOT and hence it forms a link between the two tables.
“CHAR_COPILOT” acts as foreign key of the table because the attribute “CHAR_COPILOT” is also present in the table PILOT and it references PILOT and hence it forms a link between the two tables.
“AC_NUMBER” acts as foreign key of the table because the attribute “AC_NUMBER” is also present in the table AIRCRAFT and it references AIRCRAFT and hence it forms a link between the two tables.
“CUS_CODE” acts as foreign key of the table because the attribute “CUS_CODE” is also present in the table CUSTOMER and it references CUSTOMER and hence it forms a link between the two tables.
For Table Name: AIRCRAFT:
Foreign Key: MOD_CODE
“MOD_CODE” acts as foreign key of the table because the attribute “MOD_CODE” is also present in the table MODEL and it references MODEL and hence it forms a link between the two tables.
“For Table Name: MODEL:
Foreign Key: None
There is no Foreign Key attribute present in the table because there is no attribute in the table except the primary key which is present in any other database table.
For Table Name: PILOT:
Primary Key: EMP_NUM
“EMP_NUM” acts as foreign key of the table because the attribute “EMP_NUM” is also present in the table EMPLOYEE and it references EMPLOYEE and hence it forms a link between the two tables.
For Table Name: EMPLOYEE:
Foreign Key: None
There is no Foreign Key attribute present in the table because there is no attribute in the table except the primary key which is present in any other database table.
For Table Name: CUSTOMER:
Foreign Key: None
There is no Foreign Key attribute present in the table because there is no attribute in the table except the primary key which is present in any other database table.
Relationship among the tables:
A CUSTOMER requests many CHARTER trips and more than one CHARTER trip can be requested by a single customer. Hence, the relationship between CUSTOMER and CHARTER is one to many or 1: M.
An AIRCRAFT can fly many CHARTER trips but that each CHARTER trip is flown by one AIRCRAFT. Hence, the relationship between AIRCRAFT and CHARTER is one to many or 1: M.
Each AIRCRAFT references a single MODEL but a MODEL references many AIRCRAFT. Hence, the relationship between AIRCRAFT and MODEL is many to one or M: 1.
Many CHARTER trips are flown by a single PILOT and with a single COPILOT but a PILOT can fly only one charter trip at a time. Hence, the relationship between CHARTER and PILOT is many to one or M: 1.
All PILOTS are EMPLOYEES, but not all EMPLOYEES are PILOTS – some are
There is an optional (default) 1:1 relationship between EMPLOYEE and PILOT. It can be represented that EMPLOYEE is the “parent” of PILOT.
Elimination of Homonyms:
In the above tables, there are two attributes that are homonyms. The attributes are CHAR_PILOTS and CHAR_COPILOTS.
The two homonyms attributes are eliminated by modifying the CHARTER table and deleting the CHAR_PILOTS and CHAR_COPILOTS attributes.
A new table CREW is added, which is a composite table and it acts as a link between the CHARTER and EMPLOYEE tables. One CHARTER requires many CREW members and hence there is a one to many relations between them. Many CREWS are employees but one EMPLOYEE can be a part of one crew and hence it represents a many to one relationship between them.
Relational diagram to represent relationship between CHARTER, MODEL, AIRCRAFT, CREW, EMPLOYEE, PILOT and CUSTOMER:
The Relational diagram to represent relationship between CHARTER, MODEL, AIRCRAFT, CREW, EMPLOYEE, PILOT and CUSTOMER is shown below:
Explanation:
The above relational diagram represents the one to many relationship between CUSTOMER represented as “1” and CHARTER represented as “∞”, one to many relationship between AIRCRAFT represented as “1” and CHARTER represented as “∞” , many to one relationship between AIRCRAFT represented as “∞” and MODEL represented as “1” , many to one relation between CHARTER represented as “∞” and PILOT represented as “1” and an optional one to one relationship between PILOT represented as “1” and EMPLOYEE represented as “1”. A new entity CREW table is created which is a composite table and it acts as a link between the CHARTER and EMPLOYEE tables. One CHARTER requires many CREW members and hence there is a one to many relation between them. Many CREWS are employees but one EMPLOYEE can be a part of one crew and hence it represents a many to one relationship between them. ”. A new entity RATING is created”. Which creates an M: N relationship between PILOT and RATING as a PILOT can earn many RATINGs but a RATING can be earned by many PILOTs. The M: N relationship is broken down into two 1: M relationships using EARNEDRATING entity.
Want to see more full solutions like this?
Chapter 3 Solutions
Database Systems: Design, Implementation, & Management
- What resources are used when a thread is created? How do these differ from those used when a process is created?arrow_forward(c) Consider the following set of processes: Process ID Arrival Time Priority Burst Time A 2 3 100 B 6 C 10 1 (highest) 2 40 80 D 16 4 (lowest) 20arrow_forward(3e) Test-and-Set. The Test-and-Set instruction is used in hardware to achieve synchronization. It can be defined in the following way: function Test-and-Set (var target: boolean): boolean; begin Test-and-Set:= target; target := true; end; Now show how the Test-and-Set instruction can be used to protect a critical region and hence achieve mutual exclusion (do not worry about satisfying the bounded waiting condition). (8 points) repeatarrow_forward
- Consider a system with three smoker processes and one agent process. Each smoker continuously rolls a cigarette and then smokes it. But to roll and smoke a cigarette, the smoker needs three ingredients: tobacco, paper and matches. One of the smoker processes has paper, another has tobacco and the third has the matches. The agent has an infinite supply of all three materials. The agent places two of the ingredients on the table. The smoker who has the remaining ingredient then makes and smokes a cigarette, signaling the agent on completion. The agent then puts out another two of the three ingredients, and the cycle repeats. Given below is a solution to the Cigarette-Smokers Problem. Give initial conditions for the semaphores as well as plausible values for the variables i & j and r & s, such that the agent and smokers are synchronized. Write a couple of sentences on why these initial conditions are necessary and sufficient. Solution: var a: array [0..2] of semaphore (initial condition =…arrow_forwardLevel-0 Diagram for this: A customer sends in an order form containing details of their order and their membership number. A check is made to verify that they are a member. When their order is verified, a check is made to validate that the items ordered are produced by the company. Next, the valid order is used to update the daily order file, and then used to create a shipping list and invoice, which are sent on to the Order Fulfilment System.arrow_forwardIn this assignment, you will use all of the graphics commands you have learned to create an animated scene. Your program should have a clear theme and tell a story. You may pick any school-appropriate theme that you like. The program must include a minimum of: 5 circles 5 polygons 5 line commands 2 for loops 1 global variable You may wish to use the standard code for simplegui graphics below: import simplegui def draw_handler(canvas): frame = simplegui.create_frame('Testing', 600, 600) frame.set_canvas_background("Black") frame.set_draw_handler(draw_handler) frame.start() Submit Your Code After you write your code here in the programming environment, you will check it and submit it as usual. However, the grader will only perform basic checks against some requirements. If your code passes, you should submit your work, and your teacher will manually grade your submitted work using a rubric.arrow_forward
- 1. What is the difference between a relative cell reference and an absolute cell reference and give an example of when you would use each.arrow_forwardWhat is the goal of using a chart in excel, and how is a chart useful and what is the goal of using sparklines in excel, and how are sparklines useful?arrow_forwardProve for each pair of expression f(n) and g(n) whether f(n) is big O, little o Ω,ω or Θ of g(n). Use limits to find these. For each case it is possible that more than one of these conditions is satisfied:1. f(n) =log(n2^n), g(n) = log(sqrt(n)2^(n^2))2. f(n) =nsqrt(n) +log(n^n), g(n) =n + sqrt(n)lognarrow_forward
- Need this expression solved for mu. This can be done using a symbolic toolbox, however it needs to end up being mu = function (theta, m, L, g). If using MATLAB or something similar, run the code to make sure it works.arrow_forwardA business case scenario and asked to formulate an appropriate software design solution. Theyshould complete the case and upload the solution. will be required to read the case,identify and document the key issues, problems, and opportunities presented, and then design,and develop an appropriate integrated design solution to the problem. mustdemonstrate good spreadsheet, database, analytical, and word-processing skills whendeveloping solutions. Additionally, must be creative and demonstrate synthesising andapplying Database Management and Data Analytics Principles learned in the course. They willalso need to research some aspects of the assessment. CASE BACKGROUNDMGMT SS STATS, an umbrella body that facilitates and serves various Social SecurityOrganizations/Departments within the Caribbean territories, stoodpoised to meet the needs of its stakeholders by launching an onlinedatabase at www.SSDCI.gov. The database will provide membersand the public access to the complete set of…arrow_forwardA business case scenario and asked to formulate an appropriate software design solution. Theyshould complete the case and upload the solution. will be required to read the case,identify and document the key issues, problems, and opportunities presented, and then design,and develop an appropriate integrated design solution to the problem. mustdemonstrate good spreadsheet, database, analytical, and word-processing skills whendeveloping solutions. Additionally, must be creative and demonstrate synthesising andapplying Database Management and Data Analytics Principles learned in the course. They willalso need to research some aspects of the assessment. CASE BACKGROUNDMGMT SS STATS, an umbrella body that facilitates and serves various Social SecurityOrganizations/Departments within the Caribbean territories, stoodpoised to meet the needs of its stakeholders by launching an onlinedatabase at www.SSDCI.gov. The database will provide membersand the public access to the complete set of…arrow_forward
- Database Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781305627482Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781285196145Author:Steven, Steven Morris, Carlos Coronel, Carlos, Coronel, Carlos; Morris, Carlos Coronel and Steven Morris, Carlos Coronel; Steven Morris, Steven Morris; Carlos CoronelPublisher:Cengage Learning
- A Guide to SQLComputer ScienceISBN:9781111527273Author:Philip J. PrattPublisher:Course Technology PtrCOMPREHENSIVE MICROSOFT OFFICE 365 EXCEComputer ScienceISBN:9780357392676Author:FREUND, StevenPublisher:CENGAGE L



