
Concept explainers
Primary Key:
A Primary Key in a
Example:
Students in Universities are assigned a unique registration number.
Therefore, in a STUDENT database table, the attribute “reg_no” acts as primary key.
Foreign Key:
Foreign Key is a column in a relational database table which provides a relation between two tables. It provides a cross reference between tables by pointing to primary key of another table.
Example:
In STUDENT database table, the attribute “reg_no” acts as primary key and in COURSE database table in which the student selects his or her course, the same “reg_no” acts as foreign key for the STUDENT table.
Candidate Key:
A set of attributes (minimal) which can uniquely identify a record is known as candidate keys. A attribute which could’ve been a primary key but for was not chosen as primary key for some reason is a candidate key.
The value of candidate is not null for every record in database and in unique.
The candidate key can be of composite attributes and there can be more than one candidate key in a relation.
SUPER KEY:
A set of one or more columns or attributes to uniquely identify rows in a table is called super key.
A Super Key is a candidate key containing redundant attributes.
All candidate keys are super keys as candidate keys are derived from super keys.
Any primary key plus any attribute is a super key.
SECONDARY KEY:
Secondary keys are the set of attributes which are not selected as primary key but are considered to be candidate keys for the primary key of the table.
Numbers of attributes that constitute secondary key are arbitrary.
Secondary keys are also known as alternate keys.
After selecting the attributes from candidate key to form a primary key, the remaining attributes of candidate key are called secondary keys.

Explanation of Solution
Given database tables:
Table Name: CHARTER
CHAR_TRIP | CHAR_DATE | CHAR_PILOT | CHAR_COPILOT | AC_NUMBER | CHAR_DESTINATION | CHAR_DISTANCE | CHAR_HOURS_FLOWN | CHA_HOURS_WAIT | CHAR_FUEL_GALLONS | CHAR_OIL_QTS | CUS_CODE |
10001 | 05-Feb-18 | 104 | 2289L | ATL | 936.0 | 5.1 | 2.2 | 354.1 | 1 | 10011 | |
10002 | 05-Feb-18 | 101 | 2778V | BNA | 320.0 | 1.6 | 0.0 | 72.6 | 0 | 10016 | |
10003 | 05-Feb-18 | 105 | 109 | 4278Y | GNV | 1574.0 | 7.8 | 0.0 | 339.8 | 2 | 10014 |
10004 | 06-Feb-18 | 106 | 1484P | STL | 472.0 | 2.9 | 4.9 | 97.2 | 1 | 10019 | |
10005 | 06-Feb-18 | 101 | 2289L | ATL | 1023.0 | 5.7 | 3.5 | 397.7 | 2 | 10011 | |
10006 | 06-Feb-18 | 109 | 4278Y | STL | 472.0 | 2.6 | 5.2 | 117.1 | 0 | 10017 | |
10007 | 06-Feb-18 | 104 | 105 | 2778V | GNV | 1574.0 | 7.9 | 0.0 | 348.4 | 2 | 10012 |
10008 | 07-Feb-18 | 106 | 1484P | TYS | 644.0 | 4.1 | 0.0 | 140.6 | 1 | 10014 | |
10009 | 07-Feb-18 | 105 | 2289L | GNV | 1574.0 | 6.6 | 23.4 | 459.9 | 0 | 10017 | |
10010 | 07-Feb-18 | 109 | 4278Y | ATL | 998.0 | 6.2 | 3.2 | 279.7 | 0 | 10016 | |
10011 | 07-Feb-18 | 101 | 104 | 1484P | BNA | 352.0 | 1.9 | 5.3 | 66.4 | 1 | 10012 |
10012 | 08-Feb-18 | 101 | 2289L | MOB | 884.0 | 4.8 | 4.2 | 215.1 | 0 | 10010 | |
10013 | 08-Feb-18 | 105 | 4278Y | TYS | 644.0 | 3.9 | 4.5 | 174.3 | 1 | 10011 | |
10014 | 09-Feb-18 | 106 | 4278V | ATL | 936.0 | 6.1 | 2.1 | 302.6 | 0 | 10017 | |
10015 | 09-Feb-18 | 104 | 101 | 2289L | GNV | 1645.0 | 6.7 | 0.0 | 459.5 | 2 | 10016 |
10016 | 09-Feb-18 | 109 | 105 | 2778V | MQY | 312.0 | 1.5 | 0.0 | 67.2 | 0 | 10011 |
10017 | 10-Feb-18 | 101 | 1484P | STL | 508.0 | 3.1 | 0.0 | 105.5 | 0 | 10014 | |
10018 | 10-Feb-18 | 105 | 104 | 4278Y | TYS | 644.0 | 3.8 | 4.5 | 167.4 | 0 | 10017 |
Table Name: AIRCRAFT
AC_NUMBER | MODE-CODE | AC_TTAF | AC_TTEL | AC_TTER |
1484P | PA23-250 | 1833.1 | 1833.1 | 101.8 |
2289L | C-90A | 4243.8 | 768.9 | 1123.4 |
2778V | PA31-350 | 7992.9 | 1513.1 | 789.5 |
4278Y | PA31-350 | 2147.3 | 622.1 | 243.2 |
Table Name: MODEL
MOD_CODE | MOD_MANUFACTER | MOD_NAME | MOD_SEATS | MOD_CHG_MILE |
B200 | Beechcraft | Super KingAir | 10 | 1.93 |
C-90A | Beechcraft | KingAir | 8 | 2.67 |
PA23-250 | Piper | Aztec | 6 | 1.93 |
PA31-350 | Piper | Navajao Chiettan | 10 | 2.35 |
Table Name: PILOT
EMP_NUM | PIL_LICENSE | PIL_RATINGS | PIL_MED_TYPE | PIL_MED_DATE | PIL_PTI35_DATE |
101 | ATP | ATP/SEL/MEL/Instr/CFII | 1 | 20-Jan-18 | 11-Jan-18 |
104 | ATP | ATP/SEL/MEL/Instr | 1 | 18-Dec-17 | 17-Jan-18 |
105 | COM | COMM/SEL/MEL/Instr/CFI | 2 | 05-Jan-18 | 02-Jan-18 |
106 | COM | COMM/SEL/MEL/Instr | 2 | 10-Dec-17 | 02-Feb-18 |
109 | COM | ATP/SEL/MEL/SES/Instr/CFII | 1 | 22-Jan-18 | 15-Jan-18 |
Table Name: EMPLOYEE
EMP_NUM | EMP_TITLE | EMP-LNAME | EMP_FNAME | EMP_INITIAL | EMP_CODE | EMP_HIRE_DATE |
100 | Mr. | Kolrnycz | George | D | 15-Jun-62 | 15-Mar-08 |
101 | Ms. | Lewis | Rhonda | G | 19-Mar-85 | 25-Apr-06 |
102 | Mr. | Vandam | Rhett | 14-Nov-78 | 18-May-13 | |
103 | Ms. | Jones | Anne | M | 11-May-94 | 26-Jul-17 |
104 | Mr. | Lange | John | P | 12-Jul-91 | 20-Aug-10 |
105 | Mr. | Williams | Robert | D | 14-Mar-95 | 19-Jun-17 |
106 | Mrs. | Duzak | Jeanine | K | 12-Feb-88 | 13-Mar-18 |
107 | Mr. | Deante | George | D | 01-May-95 | 02-Jul-16 |
108 | Mr. | Wiesanbach | Paul | R | 14-Feb-86 | 03-Jun-13 |
109 | Ms. | Travis | Elizabeth | K | 18-Jun-81 | 14-Feb-16 |
110 | Mrs. | Genkazi | Lieghla | W | 19-May-90 | 29-Jun-10 |
Table Name: EMPLOYEE
CUS_CODE | CUS_LNAME | CUS_FNAME | CUS_INITIAL | CUS_AREACODE | CUS_PHONE | CUS_BALANCE |
10010 | Ramas | Alfred | A | 615 | 844-2573 | 0.00 |
10011 | Dunne | Leona | K | 713 | 894-1293 | 0.00 |
10012 | Smith | Kathy | W | 615 | 894-2285 | 896.54 |
10013 | Owolski | Paul | F | 615 | 894-2180 | 1285.19 |
10014 | Orlando | Myron | 615 | 222-1672 | 673.21 | |
10015 | OBrian | Amy | B | 713 | 442-3381 | 1014.86 |
10016 | Brown | James | G | 615 | 297-1228 | 0.00 |
10017 | Williams | George | 615 | 290-2556 | 0.00 | |
10018 | Fariss | Anne | G | 713 | 382-7185 | 0.00 |
10019 | Smith | Olette | K | 615 | 297-3809 | 453.98 |
PRIMARY KEY in the above tables:
For Table Name: CHARTER:
Primary Key: CHAR_TRIP
“CHAR_TRIP” acts as primary key of the table because the attribute “CHAR_TRIP” is a unique ID that is assigned to every individual trip by the charter plane. It also uniquely identifies every other row present in the database table.
For Table Name: AIRCRAFT:
Primary Key: AC_NUMBER
“AC_NUMBER” acts as primary key of the table because the attribute “AC_NUMBER” is a unique number that is assigned to every individual charter plane and is used to distinguish among them. It also uniquely identifies every other row present in the database table.
For Table Name: MODEL:
Primary Key: MOD_CODE
“MOD_CODE” acts as primary key of the table because the attribute “MOC_CODE” is a unique number that is assigned to every individual model of the charter plane and is used to distinguish models among them. It also uniquely identifies every other row present in the database table.
For Table Name: PILOT:
Primary Key: EMP_NUM
“EMP_NUM” acts as primary key of the table because the attribute “EMP_NUM” is a unique number that is assigned to every pilot that flies an aircraft. It also uniquely identifies every other row present in the database table.
For Table Name: EMPLOYEE:
Primary Key: EMP_NUM
“EMP_NUM” acts as primary key of the table because the attribute “EMP_NUM” is a unique number or ID that is assigned to every employee that works in the airline. It also uniquely identifies every other row present in the database table.
For Table Name: CUSTOMER:
Primary Key: CUS_CODE
“CUS_CODE” acts as primary key of the table because the attribute “CUS_CODE” is a unique code that is assigned to every customer that books a flight with the airline. It also uniquely identifies every other row present in the database table.
FOREIGN KEY in the above tables:
For Table Name: CHARTER:
Primary Key: CHAR_PILOT,CHAR_COPILOT,AC_NUMBER,CUS_CODE
“CHAR_PILOT” acts as foreign key of the table because the attribute “CHAR_PILOT” is also present in the table PILOT and it references PILOT and hence it forms a link between the two tables.
“CHAR_COPILOT” acts as foreign key of the table because the attribute “CHAR_COPILOT” is also present in the table PILOT and it references PILOT and hence it forms a link between the two tables.
“AC_NUMBER” acts as foreign key of the table because the attribute “AC_NUMBER” is also present in the table AIRCRAFT and it references AIRCRAFT and hence it forms a link between the two tables.
“CUS_CODE” acts as foreign key of the table because the attribute “CUS_CODE” is also present in the table CUSTOMER and it references CUSTOMER and hence it forms a link between the two tables.
For Table Name: AIRCRAFT:
Foreign Key: MOD_CODE
“MOD_CODE” acts as foreign key of the table because the attribute “MOD_CODE” is also present in the table MODEL and it references MODEL and hence it forms a link between the two tables.
“For Table Name: MODEL:
Foreign Key: None
There is no Foreign Key attribute present in the table because there is no attribute in the table except the primary key which is present in any other database table.
For Table Name: PILOT:
Primary Key: EMP_NUM
“EMP_NUM” acts as foreign key of the table because the attribute “EMP_NUM” is also present in the table EMPLOYEE and it references EMPLOYEE and hence it forms a link between the two tables.
For Table Name: EMPLOYEE:
Foreign Key: None
There is no Foreign Key attribute present in the table because there is no attribute in the table except the primary key which is present in any other database table.
For Table Name: CUSTOMER:
Foreign Key: None
There is no Foreign Key attribute present in the table because there is no attribute in the table except the primary key which is present in any other database table.
Super key and Secondary Key in the above tables:
For Table Name: CHARTER:
Super Key:
CHAR_TRIP+CHAR_DATE: This combination of attributes can uniquely identify every other record present in the table.
Secondary Key:
CHAR_DATE+AC_NUMBER+CHAR_DESTINATION: This combination is an alternate key which will identify every other record present in the table is unique and it is less likely that one aircraft on same date will travel to the same destination twice.
For Table Name: AIRCRAFT:
Super Key:
AC_NUM+MOD_CODE: This combination of attributes can uniquely identify every other record present in the table.
Secondary Key:
MOD_CODE: This is an alternate key which will identify every other record present in the table and is unique.
For Table Name-MODEL:
Super Key:
MOD_CODE+MOD_NAME: This combination of attributes can uniquely identify every other record present in the table.
Secondary Key:
MOD_MANUFACTURER+MOD_NAME: This combination is an alternate key which will identify every other record present in the table and it is less likely that two models with same name and same manufacturer exist.
For Table Name-PILOT:
Super Key:
EMP_NUM+PIL_LICENSE: This combination of attributes can uniquely identify every other record present in the table.
Secondary Key:
PIL_LICENSE+PIL_MED_DATE: This combination is an alternate key which will identify every other record present in the table and it is less likely that two pilots with same license and same medical certificate exist.
For Table Name-EMPLOYEE:
Super Key:
EMP_NUM+EMP_DOB: This combination of attributes can uniquely identify every other record present in the table.
Secondary Key:
EMP_LNAME+EMP_FNAME+EMP_DOB: This combination is an alternate key which will identify every other record present in the table and it is less likely that two employees with same first name, same last name and same date of birth exist.
For Table Name-CUSTOMER:
Super Key:
CUS_CODE+CUS_LNAME: This combination of attributes can uniquely identify every other record present in the table.
Secondary Key:
CUS_LNAME+CUS_FNAME+CUS_PHONE: This combination is an alternate key which will identify every other record present in the table and it is less likely that two customers with same first name, same last name and same phone number exist.
Candidate keys present in the above table:
For table CHARTER:
Candidate Key: None
No practical candidate keys are possible. For example:
CHAR_DATE + CHAR_DESTINATION + AC_NUMBER + CHAR_PILOT + CHAR_COPILOT will not necessarily yield unique matches, because it is possible to fly an aircraft to the same destination twice on one date with the same pilot and copilot.
For table AIRCRAFT:
Candidate Key: None
No practical candidate keys are possible as no combination of attributes will yield unique matches, because it is possible to fly a same aircraft to the same destination twice on one date with the same pilot and copilot.
For table MODEL:
Candidate Key: None
No practical candidate keys are possible as no combination of attributes will yield unique matches, because it is possible to fly a same model of aircraft to the same destination twice on one date with the same pilot and copilot.
For table PILOT:
Candidate Key: None
No practical candidate keys are possible as no combination of attributes will yield unique matches, because it is possible to fly a same model of aircraft to the same destination twice on one date with the same pilot and copilot.
For table EMPLOYEE:
Candidate Key: EMP_LNAME + EMP_FNAME + EMP_INITIAL + EMP_DOB
The combinations of the above attributes will yield a unique outcome and hence is acceptable as candidate key.
For table CUSTOMER:
Candidate Key: CUS_LNAME + CUS_FNAME + CUS_INITIAL + CUS_PHONE
The combinations of the above attributes will yield a unique outcome and hence is acceptable as candidate key.
Want to see more full solutions like this?
Chapter 3 Solutions
Database Systems: Design, Implementation, & Management
- Obtain the MUX design for the function F(X,Y,Z) = (0,3,4,7) using an off-the-shelf MUX with an active low strobe input (E).arrow_forwardI cannot program smart home automation rules from my device using a computer or phone, and I would like to know how to properly connect devices such as switches and sensors together ? Cisco Packet Tracer 1. Smart Home Automation:o Connect a temperature sensor and a fan to a home gateway.o Configure the home gateway so that the fan is activated when the temperature exceedsa set threshold (e.g., 30°C).2. WiFi Network Configuration:o Set up a wireless LAN with a unique SSID.o Enable WPA2 encryption to secure the WiFi network.o Implement MAC address filtering to allow only specific clients to connect.3. WLC Configuration:o Deploy at least two wireless access points connected to a Wireless LAN Controller(WLC).o Configure the WLC to manage the APs, broadcast the configured SSID, and applyconsistent security settings across all APs.arrow_forwardusing r language for integration theta = integral 0 to infinity (x^4)*e^(-x^2)/2 dx (1) use the density function of standard normal distribution N(0,1) f(x) = 1/sqrt(2pi) * e^(-x^2)/2 -infinity <x<infinity as importance function and obtain an estimate theta 1 for theta set m=100 for the estimate whatt is the estimate theta 1? (2)use the density function of gamma (r=5 λ=1/2)distribution f(x)=λ^r/Γ(r) x^(r-1)e^(-λx) x>=0 as importance function and obtain an estimate theta 2 for theta set m=1000 fir the estimate what is the estimate theta2? (3) use simulation (repeat 1000 times) to estimate the variance of the estimates theta1 and theta 2 which one has smaller variance?arrow_forward
- using r language A continuous random variable X has density function f(x)=1/56(3x^2+4x^3+5x^4).0<=x<=2 (1) secify the density g of the random variable Y you find for the acceptance rejection method. (2) what is the value of c you choose to use for the acceptance rejection method (3) use the acceptance rejection method to generate a random sample of size 1000 from the distribution of X .graph the density histogram of the sample and compare it with the density function f(x)arrow_forwardusing r language a continuous random variable X has density function f(x)=1/4x^3e^-(pi/2)^4,x>=0 derive the probability inverse transformation F^(-1)x where F(x) is the cdf of the random variable Xarrow_forwardusing r language in an accelerated failure test, components are operated under extreme conditions so that a substantial number will fail in a rather short time. in such a test involving two types of microships 600 chips manufactured by an existing process were tested and 125 of them failed then 800 chips manufactured by a new process were tested and 130 of them failed what is the 90%confidence interval for the difference between the proportions of failure for chips manufactured by two processes? using r languagearrow_forward
- I want a picture of the tools and the pictures used Cisco Packet Tracer Smart Home Automation:o Connect a temperature sensor and a fan to a home gateway.o Configure the home gateway so that the fan is activated when the temperature exceedsa set threshold (e.g., 30°C).2. WiFi Network Configuration:o Set up a wireless LAN with a unique SSID.o Enable WPA2 encryption to secure the WiFi network.o Implement MAC address filtering to allow only specific clients to connect.3. WLC Configuration:o Deploy at least two wireless access points connected to a Wireless LAN Controller(WLC).o Configure the WLC to manage the APs, broadcast the configured SSID, and applyconsistent security settings across all APs.arrow_forwardA. What will be printed executing the code above?B. What is the simplest way to set a variable of the class Full_Date to January 26 2020?C. Are there any empty constructors in this class Full_Date?a. If there is(are) in which code line(s)?b. If there is not, how would an empty constructor be? (create the code lines for it)D. Can the command std::cout << d1.m << std::endl; be included after line 28 withoutcausing an error?a. If it can, what will be printed?b. If it cannot, how could this command be fixed?arrow_forwardCisco Packet Tracer Smart Home Automation:o Connect a temperature sensor and a fan to a home gateway.o Configure the home gateway so that the fan is activated when the temperature exceedsa set threshold (e.g., 30°C).2. WiFi Network Configuration:o Set up a wireless LAN with a unique SSID.o Enable WPA2 encryption to secure the WiFi network.o Implement MAC address filtering to allow only specific clients to connect.3. WLC Configuration:o Deploy at least two wireless access points connected to a Wireless LAN Controller(WLC).o Configure the WLC to manage the APs, broadcast the configured SSID, and applyconsistent security settings across all APs.arrow_forward
- Transform the TM below that accepts words over the alphabet Σ= {a, b} with an even number of a's and b's in order that the output tape head is positioned over the first letter of the input, if the word is accepted, and all letters a should be replaced by the letter x. For example, for the input aabbaa the tape and head at the end should be: [x]xbbxx z/z,R b/b,R F ① a/a,R b/b,R a/a, R a/a,R b/b.R K a/a,R L b/b,Rarrow_forwardGiven the C++ code below, create a TM that performs the same operation, i.e., given an input over the alphabet Σ= {a, b} it prints the number of letters b in binary. 1 #include 2 #include 3 4- int main() { std::cout > str; for (char c : str) { if (c == 'b') count++; 5 std::string str; 6 int count = 0; 7 char buffer [1000]; 8 9 10 11- 12 13 14 } 15 16- 17 18 19 } 20 21 22} std::string binary while (count > 0) { binary = std::to_string(count % 2) + binary; count /= 2; std::cout << binary << std::endl; return 0;arrow_forwardConsidering the CFG described below, answer the following questions. Σ = {a, b} • NT = {S} Productions: P1 S⇒aSa P2 P3 SbSb S⇒ a P4 S⇒ b A. List one sequence of productions that can accept the word abaaaba; B. Give three 5-letter words that can be accepted by this CFG; C. Create a Pushdown automaton capable of accepting the language accepted by this CFG.arrow_forward
- Programming with Microsoft Visual Basic 2017Computer ScienceISBN:9781337102124Author:Diane ZakPublisher:Cengage Learning
- Database Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781305627482Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781285196145Author:Steven, Steven Morris, Carlos Coronel, Carlos, Coronel, Carlos; Morris, Carlos Coronel and Steven Morris, Carlos Coronel; Steven Morris, Steven Morris; Carlos CoronelPublisher:Cengage LearningNp Ms Office 365/Excel 2016 I NtermedComputer ScienceISBN:9781337508841Author:CareyPublisher:Cengage



