ORGANIC CHEMISTRY (LL)-PACKAGE
ORGANIC CHEMISTRY (LL)-PACKAGE
8th Edition
ISBN: 9781319316389
Author: VOLLHARDT
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 3, Problem 19P

(a)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of HF should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(b)

Interpretation Introduction

Interpretation: The value of ΔH° involved in the formation of HCl should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(c)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of HBr should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(d)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of HI should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(e)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of (CH3)CF and HF should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(f)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of (CH3)CCl and HCl should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(g)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of (CH3)CBr and HBr should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

(h)

Interpretation Introduction

Interpretation: The value of ΔH° involved in formation of (CH3)CI and HI should be calculated.

Concept introduction: Thermodynamics is a study of energy transfers that can be done by either heat or work. The energy transferred through work involves force. When work is positive then the system gains energy while when work is negative then the system loses energy. Heat is not a state function and therefore change in enthalpy of reaction (ΔH°rxn) has been introduced. The formula to calculate ΔH° from bond dissociation of reactants and products is as follows:

  ΔH°=Sum of DH° of bonds brokenSum of DH° of bonds formed

Blurred answer
Students have asked these similar questions
Step 1: add a curved arrow. Select Draw Templates More / " C H Br 0 Br : :o: Erase H H H H Q2Q Step 2: Draw the intermediates and a curved arrow. Select Draw Templates More MacBook Air / " C H Br 0 9 Q Erase 2Q
O Macmillan Learning Question 23 of 26 > Stacked Step 7: Check your work. Does your synthesis strategy give a substitution reaction with the expected regiochemistry and stereochemistry? Draw the expected product of the forward reaction. - - CN DMF MacBook Air Clearly show stereochemistry. Question
NH2 1. CH3–MgCl 2. H3O+ ? As the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C - C bond as its major product: If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new C - C bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new C - C bond. Х ☐: C
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
  • Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
    Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305580350
    Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License