Finite Mathematics & Its Applications (12th Edition)
12th Edition
ISBN: 9780134437767
Author: Larry J. Goldstein, David I. Schneider, Martha J. Siegel, Steven Hair
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 16RE
To determine
The reason why every point on the line segment between the two vertices yields a maximum value of the objective function if the maximum value of an objective function occurs at two vertices.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
these are solutions to a tutorial that was done and im a little lost. can someone please explain to me how these iterations function, for example i Do not know how each set of matrices produces a number if someine could explain how its done and provide steps it would be greatly appreciated thanks.
Q1) Classify the following statements as a true or false statements
a. Any ring with identity is a finitely generated right R module.-
b. An ideal 22 is small ideal in Z
c. A nontrivial direct summand of a module cannot be large or small submodule
d. The sum of a finite family of small submodules of a module M is small in M
A module M 0 is called directly indecomposable if and only if 0 and M are
the only direct summands of M
f. A monomorphism a: M-N is said to split if and only if Ker(a) is a direct-
summand in M
& Z₂ contains no minimal submodules
h. Qz is a finitely generated module
i. Every divisible Z-module is injective
j. Every free module is a projective module
Q4) Give an example and explain your claim in each case
a) A module M which has two composition senes 7
b) A free subset of a modale
c) A free module
24
d) A module contains a direct summand submodule 7,
e) A short exact sequence of modules 74.
*************
*********************************
Q.1) Classify the following statements as a true or false statements:
a. If M is a module, then every proper submodule of M is contained in a maximal
submodule of M.
b. The sum of a finite family of small submodules of a module M is small in M.
c. Zz is directly indecomposable.
d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M.
e. The Z-module has two composition series.
Z
6Z
f. Zz does not have a composition series.
g. Any finitely generated module is a free module.
h. If O→A MW→ 0 is short exact sequence then f is epimorphism.
i. If f is a homomorphism then f-1 is also a homomorphism.
Maximal C≤A if and only if is simple.
Sup
Q.4) Give an example and explain your claim in each case:
Monomorphism not split.
b) A finite free module.
c) Semisimple module.
d) A small submodule A of a module N and a homomorphism op: MN, but
(A) is not small in M.
Chapter 3 Solutions
Finite Mathematics & Its Applications (12th Edition)
Ch. 3.1 - Graph the inequality 3xy3.Ch. 3.1 - Graph the feasible set for the system of...Ch. 3.1 - In Exercises 1-4, state whether the inequality is...Ch. 3.1 - In Exercises 1-4, state whether the inequality is...Ch. 3.1 - In Exercises 1-4, state whether the inequality is...Ch. 3.1 - In Exercises 1-4, state whether the inequality is...Ch. 3.1 - In Exercises 5-7, solve for x, 2x53Ch. 3.1 - Prob. 6ECh. 3.1 - In Exercises 5-7, solve for x,
7.
Ch. 3.1 - Which of the following results from solving x+13...
Ch. 3.1 - Prob. 9ECh. 3.1 - In Exercises 9-14, write the linear inequality in...Ch. 3.1 - In Exercises 9-14, write the linear inequality in...Ch. 3.1 - In Exercises 9-14, write the linear inequality in...Ch. 3.1 - In Exercises 9-14, write the linear inequality in...Ch. 3.1 - In Exercises 9-14, write the linear inequality in...Ch. 3.1 - In Exercises 15-22, determine whether or not the...Ch. 3.1 - In Exercises 15-22, determine whether or not the...Ch. 3.1 - In Exercises 15-22, determine whether or not the...Ch. 3.1 - In Exercises 15-22, determine whether or not the...Ch. 3.1 - In Exercises 15-22, determine whether or not the...Ch. 3.1 - In Exercises 15-22, determine whether or not the...Ch. 3.1 - Prob. 21ECh. 3.1 - Prob. 22ECh. 3.1 - In Exercises 23-26, graph the given inequality by...Ch. 3.1 - In Exercises 23-26, graph the given inequality by...Ch. 3.1 - Prob. 25ECh. 3.1 - In Exercises 23-26, graph the given inequality by...Ch. 3.1 - In Exercises 27-30, give the linear inequality...Ch. 3.1 - In Exercises 27-30, give the linear inequality...Ch. 3.1 - In Exercises 27-30, give the linear inequality...Ch. 3.1 - In Exercises 27-30, give the linear inequality...Ch. 3.1 - In Exercises 31-42, graph the given inequality....Ch. 3.1 - In Exercises 31-42, graph the given...Ch. 3.1 - In Exercises 31-42, graph the given inequality. x2Ch. 3.1 - In Exercises 31-42, graph the given inequality. x0Ch. 3.1 - In Exercises 31-42, graph the given...Ch. 3.1 - In Exercises 31-42, graph the given inequality....Ch. 3.1 - In Exercises 31-42, graph the given inequality....Ch. 3.1 - In Exercises 31-42, graph the given...Ch. 3.1 - In Exercises 31-42, graph the given inequality....Ch. 3.1 - In Exercises 31-42, graph the given...Ch. 3.1 - In Exercises 31-42, graph the given inequality....Ch. 3.1 - In Exercises 31-42, graph the given inequality....Ch. 3.1 - In Exercises 43-48, graph the feasible set for the...Ch. 3.1 - In Exercises 43-48, graph the feasible set for the...Ch. 3.1 - In Exercises 43-48, graph the feasible set for the...Ch. 3.1 - In Exercises 43-48, graph the feasible set for the...Ch. 3.1 - In Exercises 43-48, graph the feasible set for the...Ch. 3.1 - In Exercises 43-48, graph the feasible set for the...Ch. 3.1 - In Exercises 49-52, determine whether the given...Ch. 3.1 - In Exercises 49-52, determine whether the given...Ch. 3.1 - In Exercises 49-52, determine whether the given...Ch. 3.1 - In Exercises 49-52, determine whether the given...Ch. 3.1 - In Exercises 52-56, determine whether the given...Ch. 3.1 - In Exercises 52-56, determine whether the given...Ch. 3.1 - In Exercises 52-56, determine whether the given...Ch. 3.1 - In Exercises 52-56, determine whether the given...Ch. 3.1 - Give a system of inequalities for which the graph...Ch. 3.1 - The shaded region in Fig. 9 is bounded by four...Ch. 3.1 - The shaded region in Fig. 10 is bounded by four...Ch. 3.1 - Which quadrant if Fig. 11 contains no points that...Ch. 3.1 - Graph the line 4x2y=7. (a) Locate the point on the...Ch. 3.1 - 62. Graph the line
(a) Locate the point on the...Ch. 3.1 - Display the feasible set in Exercise 47.Ch. 3.1 - Display the feasible set in Exercise 48.Ch. 3.2 - 1. Determine whether the following points are in...Ch. 3.2 - A physical fitness enthusiast decides to devote...Ch. 3.2 - Prob. 1ECh. 3.2 - Prob. 2ECh. 3.2 - In Exercises 14, determine whether the given point...Ch. 3.2 - Prob. 4ECh. 3.2 - Manufacturing Consider the furniture manufacturing...Ch. 3.2 - 6. Manufacturing Consider the furniture...Ch. 3.2 - Packaging Joes Confectionary puts together two...Ch. 3.2 - Nutrition-Animal Mr. Holloway decides to feed his...Ch. 3.2 - Shipping A truck traveling from New York to...Ch. 3.2 - 10. Mining A coal company owns mines in two...Ch. 3.2 - 11. Exam Strategy A student is taking an exam...Ch. 3.2 - 12. Political Campaign—Resource Allocation A local...Ch. 3.2 - Nutrition-Dairy Cows A dairy farmer concludes that...Ch. 3.2 - Manufacturing-Resource Allocation A clothing...Ch. 3.3 - The feasible set for the nutrition problem of...Ch. 3.3 - 2. Rework the nutrition problem, assuming that...Ch. 3.3 - For each of the feasible sets in Exercises 1–4,...Ch. 3.3 - For each of the feasible sets in Exercises 14,...Ch. 3.3 - For each of the feasible sets in Exercises 14,...Ch. 3.3 - Prob. 4ECh. 3.3 - In Exercises 58, find the values of x and y that...Ch. 3.3 - In Exercises 58, find the values of x and y that...Ch. 3.3 - In Exercises 58, find the values of x and y that...Ch. 3.3 - In Exercises 5–8, find the values of x and y that...Ch. 3.3 - In Exercises 9–12, find the values of x and y that...Ch. 3.3 - In Exercises 9–12, find the values of x and y that...Ch. 3.3 - In Exercises 9–12, find the values of x and y that...Ch. 3.3 - In Exercises 9–12, find the values of x and y that...Ch. 3.3 - 13. Nutrition—People Consider the nutrition...Ch. 3.3 - 14. Nutrition—People Consider the nutrition...Ch. 3.3 - 15. Packaging Refer to Exercises 3.2, Problem 7....Ch. 3.3 - Nutrition-Animal Refer to Exercises 3.2, Problem...Ch. 3.3 - 17. Shipping Refer to Exercises 3.2, Problem 9....Ch. 3.3 - 18. Mining Refer to Exercises 3.2, Problem 10....Ch. 3.3 - Exam Strategy Refer to Exercises 3.2, Problem 11....Ch. 3.3 - Political Campaign-Resource Allocation Refer to...Ch. 3.3 - 21. Nutrition—Dairy Cows Refer to Exercises 3.2,...Ch. 3.3 - Manufacturing-Resource Allocation Refer to...Ch. 3.3 - Prob. 23ECh. 3.3 - Prob. 24ECh. 3.3 - In Exercises 25–32, find the optimal value for the...Ch. 3.3 - In Exercises 25–32, find the optimal value for the...Ch. 3.3 - In Exercises 2532, find the optimal value for the...Ch. 3.3 - In Exercises 25–32, find the optimal value for the...Ch. 3.3 - In Exercises 25–32, find the optimal value for the...Ch. 3.3 - In Exercises 25–32, find the optimal value for the...Ch. 3.3 - In Exercises 2532, find the optimal value for the...Ch. 3.3 - In Exercises 25–32, find the optimal value for the...Ch. 3.3 - 33. Manufacturing—Resource Allocation Infotron,...Ch. 3.3 - 34. Manufacturing—Production Planning An...Ch. 3.3 - Agriculture-Crop Planning A farmer has 100 acres...Ch. 3.3 - 36. Manufacturing—Resource Allocation A company...Ch. 3.3 - 37. Manufacturing The E-JEM Company produces two...Ch. 3.3 - Refining A refinery has two smelters that extract...Ch. 3.3 - 39. Nutrition—People A nutritionist, working for...Ch. 3.3 - 40. Construction—Resource Allocation A contractor...Ch. 3.3 - 41. Packaging—Product Mix The Beautiful Day Fruit...Ch. 3.3 - 42. Manufacturing—Resource Allocation The Bluejay...Ch. 3.3 - Agriculture-Crop Planning Suppose that the farmer...Ch. 3.3 - 44. Nutrition Pavan wants to add a sliced carrot...Ch. 3.3 - Packaging A small candy shop makes a special Cupid...Ch. 3.3 - Prob. 46ECh. 3.3 - 47. Packaging A bath shop sells two different gift...Ch. 3.3 - Packaging A florist offers two types of Thank You...Ch. 3.3 - Consider the following linear programming problem:...Ch. 3.3 - Consider the following linear programming problem:...Ch. 3.3 - Prob. 51ECh. 3.3 - Use Excel or Wolfram| Alpha to solve Exercise 26.Ch. 3.4 - Problems 1–3 refer to Example 1. Translate the...Ch. 3.4 - Problems 13 refer to Example 1. Translate the...Ch. 3.4 - Problems 13 refer to Example 1. Translate the...Ch. 3.4 - A linear programming problem has objective...Ch. 3.4 - 1. Figure 10(a) shows the feasible set of the...Ch. 3.4 - Figure 10(b) shows the feasible set of the...Ch. 3.4 - Consider the feasible set in Fig. 11, where three...Ch. 3.4 - Consider the feasible set in Fig. 11, where three...Ch. 3.4 - Consider the feasible set in Fig. 11, where three...Ch. 3.4 - Prob. 6ECh. 3.4 - Prob. 7ECh. 3.4 - Consider the feasible set in Fig. 12, where three...Ch. 3.4 - Consider the feasible set in Fig. 12, where three...Ch. 3.4 - Consider the feasible set in Fig. 12, where three...Ch. 3.4 - Consider the feasible set in Fig. 13. For what...Ch. 3.4 - Prob. 12ECh. 3.4 - Nutrition-Animal Mr. Smith decides to feed his pet...Ch. 3.4 - Oil Production An oil company owns two refineries....Ch. 3.4 - Investment Planning Mr. Jones has $9000 to invest...Ch. 3.4 - Shipping-Product Mix A produce dealer in Florida...Ch. 3.4 - 17. Transportation—Shipping A foreign-car...Ch. 3.4 - Transportation-Shipping Consider the foreign-car...Ch. 3.4 - Manufacturing-Production Planning An oil refinery...Ch. 3.4 - 20. Manufacturing—Production Planning Suppose that...Ch. 3.4 - 21. Shipping—Resource Allocation A shipping...Ch. 3.4 - Shipping-Resource Allocation Suppose that the...Ch. 3.4 - 23. Transportation—Shipping A major coffee...Ch. 3.4 - Transportation-Shipping Consider the coffee...Ch. 3.4 - 25. Packaging—Product Mix A pet store sells three...Ch. 3.4 - Prob. 26ECh. 3.4 - 27. Refer to Fig. 6. As the lines of constant...Ch. 3.4 - Figure 16 shows the feasible set for the nutrition...Ch. 3.4 - Consider the feasible set in Fig. 17(a). In...Ch. 3.4 - Consider the feasible set in Fig. 17(a). In...Ch. 3.4 - Consider the feasible set in Fig. 17(a). In...Ch. 3.4 - Consider the feasible set in Fig. 17(a). In...Ch. 3.4 - Consider the feasible set in Fig. 17(a). In...Ch. 3.4 - Consider the feasible set in Fig. 17(a). In...Ch. 3.4 - Consider the feasible set in Fig. 17(a). In...Ch. 3.4 - Consider the feasible set in Fig. 17(a). In...Ch. 3.4 - Prob. 37ECh. 3 - State the inequality properties for addition,...Ch. 3 - What are the general forms of a linear inequality...Ch. 3 - Prob. 3FCCECh. 3 - 4. What is meant by the feasible set of a system...Ch. 3 - Prob. 5FCCECh. 3 - Prob. 6FCCECh. 3 - Prob. 7FCCECh. 3 - Prob. 8FCCECh. 3 - 9. Give a procedure for solving a linear...Ch. 3 - Prob. 1RECh. 3 - 2. Graph the linear inequality.
Ch. 3 - 3. Write the inequality whose graph is the...Ch. 3 - 4. Travel—Resource Allocation Terrapin Airlines...Ch. 3 - Nutrition-People A nutritionist is designing a new...Ch. 3 - Prob. 6RECh. 3 - Packaging-Product Mix A confectioner makes two...Ch. 3 - Prob. 8RECh. 3 - Packaging-Resource Allocation A computer company...Ch. 3 - Transportation-Shipping An appliance company has...Ch. 3 - Prob. 11RECh. 3 - Prob. 12RECh. 3 - Prob. 13RECh. 3 - Prob. 14RECh. 3 - Prob. 15RECh. 3 - Prob. 16RECh. 3 - When mathematicians are presented with a linear...Ch. 3 - When mathematicians are presented with a linear...Ch. 3 - When mathematicians are presented with a linear...Ch. 3 - When mathematicians are presented with a linear...Ch. 3 - When mathematicians are presented with a linear...Ch. 3 - When mathematicians are presented with a linear...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Prove that Σ prime p≤x p=3 (mod 10) 1 Ρ = for some constant A. log log x + A+O 1 log x "arrow_forwardProve that, for x ≥ 2, d(n) n2 log x = B ― +0 X (금) n≤x where B is a constant that you should determine.arrow_forwardProve that, for x ≥ 2, > narrow_forwardI need diagram with solutionsarrow_forwardT. Determine the least common denominator and the domain for the 2x-3 10 problem: + x²+6x+8 x²+x-12 3 2x 2. Add: + Simplify and 5x+10 x²-2x-8 state the domain. 7 3. Add/Subtract: x+2 1 + x+6 2x+2 4 Simplify and state the domain. x+1 4 4. Subtract: - Simplify 3x-3 x²-3x+2 and state the domain. 1 15 3x-5 5. Add/Subtract: + 2 2x-14 x²-7x Simplify and state the domain.arrow_forwardQ.1) Classify the following statements as a true or false statements: Q a. A simple ring R is simple as a right R-module. b. Every ideal of ZZ is small ideal. very den to is lovaginz c. A nontrivial direct summand of a module cannot be large or small submodule. d. The sum of a finite family of small submodules of a module M is small in M. e. The direct product of a finite family of projective modules is projective f. The sum of a finite family of large submodules of a module M is large in M. g. Zz contains no minimal submodules. h. Qz has no minimal and no maximal submodules. i. Every divisible Z-module is injective. j. Every projective module is a free module. a homomorp cements Q.4) Give an example and explain your claim in each case: a) A module M which has a largest proper submodule, is directly indecomposable. b) A free subset of a module. c) A finite free module. d) A module contains no a direct summand. e) A short split exact sequence of modules.arrow_forward1 2 21. For the matrix A = 3 4 find AT (the transpose of A). 22. Determine whether the vector @ 1 3 2 is perpendicular to -6 3 2 23. If v1 = (2) 3 and v2 = compute V1 V2 (dot product). .arrow_forward7. Find the eigenvalues of the matrix (69) 8. Determine whether the vector (£) 23 is in the span of the vectors -0-0 and 2 2arrow_forward1. Solve for x: 2. Simplify: 2x+5=15. (x+3)² − (x − 2)². - b 3. If a = 3 and 6 = 4, find (a + b)² − (a² + b²). 4. Solve for x in 3x² - 12 = 0. -arrow_forward5. Find the derivative of f(x) = 6. Evaluate the integral: 3x3 2x²+x— 5. - [dz. x² dx.arrow_forward5. Find the greatest common divisor (GCD) of 24 and 36. 6. Is 121 a prime number? If not, find its factors.arrow_forward13. If a fair coin is flipped, what is the probability of getting heads? 14. A bag contains 3 red balls and 2 blue balls. If one ball is picked at random, what is the probability of picking a red ball?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY
Optimization Problems in Calculus; Author: Professor Dave Explains;https://www.youtube.com/watch?v=q1U6AmIa_uQ;License: Standard YouTube License, CC-BY
Introduction to Optimization; Author: Math with Dr. Claire;https://www.youtube.com/watch?v=YLzgYm2tN8E;License: Standard YouTube License, CC-BY