Physics for Scientists and Engineers, Vol. 1
Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
bartleby

Videos

Question
Book Icon
Chapter 29, Problem 69P

(a)

To determine

RMS voltage between the points A and B.

(a)

Expert Solution
Check Mark

Answer to Problem 69P

  VAB=80.344V

Explanation of Solution

Given:

Rms voltage of the generator, ε=115V

Frequency of the generator, f=60Hz

Inductance, L=137mH

Resistance, R=50Ω

Capacitance, C=25μF

Formula used:

  Irms=εZZ=R2+ ( X L X C )2XL=2πfLXC=12πfC

Calculation:

The rms voltage between points A and B is,

  VAB=IrmsXLVAB=εZXLVAB=ε R 2 + ( X L X C ) 2 XLVAB=ε R 2 + ( 2πfL 1 2πfC ) 2 2πfLVAB=115V ( 50Ω ) 2 + ( ( 2π×60Hz×137mH ) 1 ( 2π×60Hz×25μF ) ) 2 (2π×60Hz×137mH)VAB=115V ( 50Ω ) 2 + ( 51.648Ω106.10Ω ) 2 51.648ΩVAB=80.344V

Conclusion:

The rms voltage through points A and B where the inductor is present is, VAB=80.344V .

(b)

To determine

RMS voltage between B and C.

(b)

Expert Solution
Check Mark

Answer to Problem 69P

  VBC=77.78V

Explanation of Solution

Given:

Rms voltage of the generator, ε=115V

Frequency of the generator, f=60Hz

Inductance, L=137mH

Resistance, R=50Ω

Capacitance, C=25μF

Formula used:

  Irms=εZZ=R2+ ( X L X C )2XL=2πfLXC=12πfC

Calculation:

The rms voltage between points B and C is,

  VBC=IrmsRVBC=εZRVBC=ε R 2 + ( X L X C ) 2 RVBC=ε R 2 + ( 2πfL 1 2πfC ) 2 RVBC=115V ( 50Ω ) 2 + ( ( 2π×60Hz×137mH ) 1 ( 2π×60Hz×25μF ) ) 2 50ΩVBC=115V ( 50Ω ) 2 + ( 51.648Ω106.10Ω ) 2 50ΩVBC=77.78V

Conclusion:

Across the resistor in between the points B and C, the rms voltage is VBC=77.78V .

(c)

To determine

RMS voltage between points C and D.

(c)

Expert Solution
Check Mark

Answer to Problem 69P

  VCD=165.05V

Explanation of Solution

Given:

Rms voltage of the generator, ε=115V

Frequency of the generator, f=60Hz

Inductance, L=137mH

Resistance, R=50Ω

Capacitance, C=25μF

Formula used:

  Irms=εZZ=R2+ ( X L X C )2XL=2πfLXC=12πfC

Calculation:

The rms voltage between points D and C is

  VCD=IrmsXCVCD=εZXCVCD=ε R 2 + ( X L X C ) 2 XCVCD=ε R 2 + ( 2πfL 1 2πfC ) 2 XCVCD=115V ( 50Ω ) 2 + ( ( 2π×60Hz×137mH ) 1 ( 2π×60Hz×25μF ) ) 2 2π×60Hz×25μFVCD=115V ( 50Ω ) 2 + ( 51.648Ω106.10Ω ) 2 106.10ΩVCD=165.05V

Conclusion:

Rms voltage across the capacitance is VCD=165.05V .

(d)

To determine

The rms voltage between the points A and C.

(d)

Expert Solution
Check Mark

Answer to Problem 69P

  VAC=111.58V

Explanation of Solution

Given:

Rms voltage of the generator, ε=115V

Frequency of the generator, f=60Hz

Inductance, L=137mH

Resistance, R=50Ω

Capacitance, C=25μF

Rms voltage between AB, VAB=80.344V

Rms voltage between BC, VBC=77.78V

Calculation:

The voltage across AC is calculated using the Pythagoras theorem as the voltage in the inductor leads the voltage in the resistor according to the phasor diagrams,

  VAC=V AB2+V BC2=80V2+77.78V2=111.58V

Conclusion:

The voltage across AC is VAC=111.58V .

(e)

To determine

The rms voltage across BD.

(e)

Expert Solution
Check Mark

Answer to Problem 69P

  VBD=182.46V

Explanation of Solution

Given:

Rms voltage of the generator, ε=115V

Frequency of the generator, f=60Hz

Inductance, L=137mH

Resistance, R=50Ω

Capacitance, C=25μF

Rms voltage between AB, VAB=80.344V

Rms voltage between DC, VCD=165.05V

Calculation:

The voltage across CD is such that the voltage across the resistor leads the capacitor voltage according to the phasor diagram,

  VBD=V CD2+V BC2VBD=165 .05V2+77.78V2VBD=182.46V

Conclusion:

Across BD the rms voltage is VBD=182.46V .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Fresnel lens: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of +1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed for 550 nm? Express your answer in units of μm to one decimal point. Fresnel lens: What would the power of the first diffracted order of this lens be at wavelength of 400 nm? Express your answer in diopters to one decimal point. Eye: A person with myopic eyes has a far point of 15 cm. What power contact lenses does she need to correct her version to a standard far point at infinity? Give your answer in diopter to one decimal point.
Paraxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of the plano-convex field flattener? (p written as rho )
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \).  (b) Repeat part (a) for 13 electrons.   Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.

Chapter 29 Solutions

Physics for Scientists and Engineers, Vol. 1

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY