Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 29, Problem 59P
(a)
To determine
The current in the circuit as a function of time.
(b)
To determine
The capacitance of the ideal ac generator.
(c)
To determine
The expression for electrical energy Ue, the magnetic energy Um, and the total energy U as a function of time.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An inductor with inductance L is connected to an AC source. If the AC source provides a voltage VL(t) = V0cos(omegat), what is the current IL(t) through the inductor as a function of time?
The emf of an ac source is given by v(t) = V0 sin ωt, where V0 = 100 V andω = 200π rad/s. Find an expression that represents the output current of the source if it is connected across (a) a 20-μF capacitor, (b) a 20-mH inductor, and (c) a 50-Ω resistor.
A capacitor is connected across the terminals of an ac generator that has a frequency of 440 Hz and supplies a voltage of 24 V. When a second capacitor is connected in parallel with the fi rst one, the current from the generator increases by 0.18 A. Find the capacitance of the second capacitor.
Chapter 29 Solutions
Physics for Scientists and Engineers, Vol. 1
Ch. 29 - Prob. 1PCh. 29 - Prob. 2PCh. 29 - Prob. 3PCh. 29 - Prob. 4PCh. 29 - Prob. 5PCh. 29 - Prob. 6PCh. 29 - Prob. 7PCh. 29 - Prob. 8PCh. 29 - Prob. 9PCh. 29 - Prob. 10P
Ch. 29 - Prob. 11PCh. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Prob. 14PCh. 29 - Prob. 15PCh. 29 - Prob. 16PCh. 29 - Prob. 17PCh. 29 - Prob. 18PCh. 29 - Prob. 19PCh. 29 - Prob. 20PCh. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - Prob. 23PCh. 29 - Prob. 24PCh. 29 - Prob. 25PCh. 29 - Prob. 26PCh. 29 - Prob. 27PCh. 29 - Prob. 28PCh. 29 - Prob. 29PCh. 29 - Prob. 30PCh. 29 - Prob. 31PCh. 29 - Prob. 32PCh. 29 - Prob. 33PCh. 29 - Prob. 34PCh. 29 - Prob. 35PCh. 29 - Prob. 36PCh. 29 - Prob. 37PCh. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - Prob. 40PCh. 29 - Prob. 41PCh. 29 - Prob. 42PCh. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - Prob. 45PCh. 29 - Prob. 47PCh. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - Prob. 50PCh. 29 - Prob. 51PCh. 29 - Prob. 52PCh. 29 - Prob. 54PCh. 29 - Prob. 55PCh. 29 - Prob. 56PCh. 29 - Prob. 57PCh. 29 - Prob. 58PCh. 29 - Prob. 59PCh. 29 - Prob. 60PCh. 29 - Prob. 61PCh. 29 - Prob. 62PCh. 29 - Prob. 63PCh. 29 - Prob. 64PCh. 29 - Prob. 65PCh. 29 - Prob. 66PCh. 29 - Prob. 67PCh. 29 - Prob. 68PCh. 29 - Prob. 69PCh. 29 - Prob. 70PCh. 29 - Prob. 72PCh. 29 - Prob. 73PCh. 29 - Prob. 74PCh. 29 - Prob. 75PCh. 29 - Prob. 76PCh. 29 - Prob. 77PCh. 29 - Prob. 78PCh. 29 - Prob. 79PCh. 29 - Prob. 80PCh. 29 - Prob. 81PCh. 29 - Prob. 82PCh. 29 - Prob. 83PCh. 29 - Prob. 84PCh. 29 - Prob. 85PCh. 29 - Prob. 86PCh. 29 - Prob. 87PCh. 29 - Prob. 88PCh. 29 - Prob. 89P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At s1iat frequency is the reactance of a 20F capacitor equal to that of a 10-mH inductor?arrow_forwardA 40-mH inductor is connected to a 60-Hz AC source whose voltage amplitude is 50 V. If an AC voltmeter is placed across the inductor, what does it read?arrow_forwardCalculate the rms currents for an ac source is given by v(t)=v0sint , where V0=100V and =200rad/s when connected across (a) a 20F capacitor, (b) a 20-mH inductor, and (c) a 50 resistor.arrow_forward
- An RLC series circuit consists of a 50 resistor, a 200F capacitor, and a 120-mN inductor whose coil has a resistance of 20. The source for the circuit has an tins emf of 240 V at a frequency of 60 Hz. Calculate the tins voltages across the (a) resistor, (b) capacitor, and (c) inductor.arrow_forwardAn ac source of voltage amplitude 10 V delivers electric energy at a rate of 0.80 W when its current output is 2.5 A. What is the phase angle between the emf and the current?arrow_forwardWhat is the self-inductance of an LC circuit that oscillates at 60 Hz 1ien the capacitance is 10 F ?arrow_forward
- An PLC series circuit with R=600 , L = 30 mH. and c=0.050F is driven by an ac source whose frequency and voltage amplitude are 500 Hz and 50 V, respectively, (a) What is the impedance of the circuit? (b) What is the amplitude of the current in the circuit? (c) What is the phase angle between the emf of the source and the current?arrow_forwardAn ac generator with emf em sin vdt, where m e=25.0 V and vd 377 rad/s, is connected to a 4.15 mF capacitor. (a)What is the maximum value of the current? (b) When the current is a maximum, what is the emf of the generator? (c)When the emf of the generator is -12.5 V and increasing in magnitude, what is the current?arrow_forwardA circuit is constructed with an AC generator, a resistor, capacitor and inductor as shown. The generator voltage varies in time as ε =Va - Vb = εmsinωt, where εm = 120 V and ω = 312 radians/second. The inductance L = 282 mH. The values for the capacitance C and the resistance R are unkown. What is known is that the current in the circuit leads the voltage across the generator by φ = 44 degrees and the average power delivered to the circuit by the generator is Pavg = 75 W. What is Imax, the amplitude of the current oscillations in the circuit? What is R, the value of the resistance of the circuit? What is C, the value of the capacitance of the circuit? What is the average power delivered to the circuit when it is in resonance?arrow_forward
- Do all three subparts correctly.arrow_forwardVo sin wt, where Vo = 80 V and w = 2807 rad/s. The voltage of an ac source is given by V(t) = Calculate the average power output of the source if it is connected across (a) a 25-µF capacitor, (b) a 40- mH inductor, and (c) a 85-Q resistor. (d) What is the rms voltage of the ac source? Hint a. The average power output with the capacitor is W. b. The average power output with the inductor is W. c. The average power output with the resistor is W. d. The rms voltage of the ac source is V. Additional Hintsarrow_forwardA series LRC ac circuit has a resistance of 4.0 kilo-Ohms, a capacitance of 33.0 mocroFarads, and an inductance of 23.0 H. If the frequency of the alternating current is 2.0/pi kHz, what is the phase angle between the voltage and the current?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY