Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 29, Problem 47CP

A wire carrying a current I is bent into the shape of an exponential spiral, r = eθ, from θ = 0 to θ = 2π as suggested in Figure P29.47. To complete a loop, the ends of the spiral are connected by a straight wire along the x axis. (a) The angle β between a radial line and its tangent line at any point on a curve r = f(θ) is related to the function by

tan β = r d r / d θ

Use this fact to show that β = π/4. (b) Find the magnetic field at the origin.

Figure P29.47

Chapter 29, Problem 47CP, A wire carrying a current I is bent into the shape of an exponential spiral, r = e, from  = 0 to  =

Blurred answer
Students have asked these similar questions
Two wires AC and BC are attached to a 7 Kg sphere that It rotates at constant speed v in the horizontal circle shown in the figure. Yes θ1 = 55° and θ2= 30 ° and d 1.4 m, determine the range of values of v for which both wires are held taut.
In earlier times when many households received nondigital television signals from an antenna, the lead-in wires from the antenna were often constructed in the form of two paral- lel wires (Fig. P31.50). The two wires carry currents of equal magnitude in opposite directions. The center-to-center separation of the wires is w, and a is their radius. Assume w is large enough compared with a that the wires carry the current uniformly distributed over their surfaces and negli- gible magnetic field exists inside the wires. (a) Why does this configuration of conductors have an inductance? (b) What TV antenna TV set Figure P31.50 constitutes the flux loop for this configuration? (c) Show that the inductance of a length x of this type of lead-in is w - a L In a
A wire carrying a current I is bent into the shape of an exponential spiral, r = eθ, from θ = 0 to θ = 2π as suggested in the figure. To complete a loop, the ends of the spiral are connected by a straight wire along the x axis. (a) The angle β between a radial line and its tangent line at any point on acurve r = f(θ) is related to the function by                        tan β = (r)/(dr/dθ)Use this fact to show that β = π/4. (b) Find the magnetic field at the origin.

Chapter 29 Solutions

Physics for Scientists and Engineers with Modern Physics

Ch. 29 - Consider a flat, circular current loop of radius R...Ch. 29 - Prob. 7PCh. 29 - One long wire carries current 30.0 A to the left...Ch. 29 - Determine the magnetic field (in terms of I, a,...Ch. 29 - Prob. 10PCh. 29 - Two long, parallel wires carry currents of I1 =...Ch. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Prob. 14PCh. 29 - You are part of a team working in a machine parts...Ch. 29 - Why is the following situation impossible? Two...Ch. 29 - Prob. 17PCh. 29 - Prob. 18PCh. 29 - The magnetic coils of a tokamak fusion reactor are...Ch. 29 - A packed bundle of 100 long, straight, insulated...Ch. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - A long solenoid that has 1 000 turns uniformly...Ch. 29 - Prob. 24PCh. 29 - Prob. 25PCh. 29 - Prob. 26PCh. 29 - Prob. 27PCh. 29 - You are working for a company that creates special...Ch. 29 - A solenoid of radius r = 1.25 cm and length =...Ch. 29 - Prob. 30PCh. 29 - Prob. 31APCh. 29 - Why is the following situation impossible? The...Ch. 29 - Prob. 33APCh. 29 - Prob. 34APCh. 29 - Prob. 35APCh. 29 - Prob. 36APCh. 29 - A very large parallel-plate capacitor has uniform...Ch. 29 - Two circular coils of radius R, each with N turns,...Ch. 29 - Prob. 39APCh. 29 - Two circular loops are parallel, coaxial, and...Ch. 29 - Prob. 41APCh. 29 - Review. Rail guns have been suggested for...Ch. 29 - Prob. 43APCh. 29 - An infinitely long, straight wire carrying a...Ch. 29 - Prob. 45CPCh. 29 - Prob. 46CPCh. 29 - A wire carrying a current I is bent into the shape...Ch. 29 - Prob. 48CPCh. 29 - Prob. 49CPCh. 29 - Prob. 50CPCh. 29 - Prob. 51CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY