Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 43AP
To determine
The magnetic field at the center of the coil.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A scientist wants to study the in-plane spiral tubes used in chemical reactors. To
proceed with his study, he took a thin insulated wire and converted it into a plane
spiral of 140 closely wounded turns. The required field at the centre of the spiral is
8.8 µT and the current flowing across the spiral is 10 mA. In the given figure, the
radius of the inner turns is a and the radius of the outer turns is b. If b is twice of a
then find the inner and outer radii to conduct the experiment.
(Use In (2) = 0.693)
Q.
O 75 mm, 150 mm
55.4 mm, 110.8 mm
80 mm, 160 mm
69.3 mm, 138.6 mm
a
Three cylindrical wires are made of the same material. Their lengths and radii arewire 1: length ℓ, radius 2rwire 2: length 2ℓ, radius rwire 3: length 3ℓ/2, radius r/2 With the currents you calculated, rank them according to the current density through the cross section of the wires, greatest first.
The figure below is a cross-sectional view of a coaxial cable. The center
conductor is surrounded by a rubber layer, an outer conductor, and another
rubber layer. In a particular application, the current in the inner conductor is
I, = 1.14 A out of the page and the current in the outer conductor is I2 =
3.04 A into the page. Assuming the distance d = 1.00 mm, answer the
following.
(a) Determine the magnitude and direction of the magnetic field at point
а.
magnitude
-Select-
direction
(b) Determine the magnitude and direction of the magnetic field at
point b.
magnitude
HT
direction
---Select--
Chapter 29 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 29.1 - Consider the magnetic field due to the current in...Ch. 29.2 - Prob. 29.2QQCh. 29.3 - Prob. 29.3QQCh. 29.3 - Prob. 29.4QQCh. 29.4 - Consider a solenoid that is very long compared...Ch. 29 - Calculate the magnitude of the magnetic field at a...Ch. 29 - Prob. 2PCh. 29 - In Niels Bohrs 1913 model of the hydrogen atom, an...Ch. 29 - Prob. 4PCh. 29 - Prob. 5P
Ch. 29 - Consider a flat, circular current loop of radius R...Ch. 29 - Prob. 7PCh. 29 - One long wire carries current 30.0 A to the left...Ch. 29 - Determine the magnetic field (in terms of I, a,...Ch. 29 - Prob. 10PCh. 29 - Two long, parallel wires carry currents of I1 =...Ch. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Prob. 14PCh. 29 - You are part of a team working in a machine parts...Ch. 29 - Why is the following situation impossible? Two...Ch. 29 - Prob. 17PCh. 29 - Prob. 18PCh. 29 - The magnetic coils of a tokamak fusion reactor are...Ch. 29 - A packed bundle of 100 long, straight, insulated...Ch. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - A long solenoid that has 1 000 turns uniformly...Ch. 29 - Prob. 24PCh. 29 - Prob. 25PCh. 29 - Prob. 26PCh. 29 - Prob. 27PCh. 29 - You are working for a company that creates special...Ch. 29 - A solenoid of radius r = 1.25 cm and length =...Ch. 29 - Prob. 30PCh. 29 - Prob. 31APCh. 29 - Why is the following situation impossible? The...Ch. 29 - Prob. 33APCh. 29 - Prob. 34APCh. 29 - Prob. 35APCh. 29 - Prob. 36APCh. 29 - A very large parallel-plate capacitor has uniform...Ch. 29 - Two circular coils of radius R, each with N turns,...Ch. 29 - Prob. 39APCh. 29 - Two circular loops are parallel, coaxial, and...Ch. 29 - Prob. 41APCh. 29 - Review. Rail guns have been suggested for...Ch. 29 - Prob. 43APCh. 29 - An infinitely long, straight wire carrying a...Ch. 29 - Prob. 45CPCh. 29 - Prob. 46CPCh. 29 - A wire carrying a current I is bent into the shape...Ch. 29 - Prob. 48CPCh. 29 - Prob. 49CPCh. 29 - Prob. 50CPCh. 29 - Prob. 51CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The figure below is a cross-sectional view of a coaxial cable. The center conductor is surrounded by a rubber layer, an outer conductor, and another rubber layer. In a particular application, the current in the inner conductor is I, - 1.20 A out of the page and the current in the outer conductor is I, = 3.16 A into the page. Assuming the distance d = 1.00 mm, answer the following. (a) Determine the magnitude and direction of the magnetic field at point a. magnitude 240 direction upward (b) Determine the magnitude and direction of the magnetic field at point b. magnitude direction -Seloctarrow_forwardThe figure below is a cross-sectional view of a coaxial cable. The center conductor is surrounded by a rubber layer, an outer conductor, and another rubber layer. In a particular application, the current in the inner conductor is I1 = 1.12 A out of the page and the current in the outer conductor is I2 = 3.04 A into the page. Assuming the distance d = 1.00 mm, answer the following.arrow_forwardThe figure below is a cross-sectional view of a coaxial cable. The center conductor is surrounded by a rubber layer, an outer conductor, and another rubber layer. In a particular application, the current in the inner conductor is I, = 1.20 A out of the page and the current in the outer conductor is I, = 3.06 A into the page. Assuming the distance d = 1.00 mm, answer the following. (a) Determine the magnitude and direction of the magnetic field at point a. magnitude pT direction --Select-- (b) Determine the magnitude and direction of the magnetic field at point b. magnitude pT direction --Select---arrow_forward
- Q-12arrow_forwardThe figure below is a cross-sectional view of a coaxial cable. The center conductor is surrounded by a rubber layer, an outer conductor, and another rubber layer. In a particular application, the current in the inner conductor is I1 = 1.20 A out of the page and the current in the outer conductor is I2 = 2.86 A into the page. Assuming the distance d = 1.00 mm, answer the following. (a) Determine the magnitude and direction of the magnetic field at point a. magnitude µT direction (b) Determine the magnitude and direction of the magnetic field at point b. magnitude µT directionarrow_forwardFigure is a cross-sectional view of a coaxial cable. The center conductor is surrounded by a rubber layer, which is surrounded by an outer conductor, which is surrounded by another rubber layer. In a particular application, the current in the inner conductor I 2 is 7.00 A out of the page and the current in the outer conductor I 1 is 5.00 A into the page. Assume that l = 1.20 mm. Determine the magnitude and direction (upward or downward of the page) of the magnetic field at point a. (Choose upward of the page as the positive y-direction and express the magnetic field by using the sign of the result, which must be in µT and without decimals. That means if you get a result of a 922 and the direction of the field is upward of the page, just type 922 or if you find the direction of the field as downward of the page, just tpe -922 in the answer box. Take vacuum permeability µ 0 = 4π x 10 -7 T /A 2 and π = 3.14.)arrow_forward
- The figure below is a cross-sectional view of a coaxial cable. The center conductor is surrounded by a rubber layer, an outer conductor, and another rubber layer. In a particular application, the current in the inner conductor is I1 = 1.14 A out of the page and the current in the outer conductor is I2 = 2.90 A into the page. Assuming the distance d = 1.00 mm, answer the following.(a) Determine the magnitude and direction of the magnetic field at point a.find magnitude ut and direction(b) Determine the magnitude and direction of the magnetic field at point b.find magnitude ut and directionarrow_forwardCan you please answer d, e & f?arrow_forwardConsider a coaxial cable as shown in the figure. The cable consists of a solid inner conductor of radius r = 0.5 cm that is surrounded by a cylindrical tube of inner radius ry = 0.8 cm and outer radius r = 1.9 cm. The conductors carry equal and opposite currents / = 4 A but the current density varies linearly with the distance from the center for the inner conductor (j = cr) while it is distributed uniformly for the outer conductor. Determine the magnetic field (in units of uT (microtesla)) at a distance r = 1.2 cm from the axis. (Ho = 4x x 10-7 N/A² and x = 3.14) Answer:arrow_forward
- an iron wire with cross-section 3,2 * 10-6 m2 carries current 167 A. Find the drift velocity Vd , in units of milimeters per second , by assuming the existence of two carries per iron atom. Hint : first , calculate number density n of the charge carries.arrow_forward(a). A silver wire 6.6 mm with diameter in which 3.6 ampere current passing through. Calculate how manycoulombs of electric charge flows from silver wire in 3.0 hour. (b). The thin copper wire with radius of 1.3 mm is wound into a torus shaped coil as revealed in figure.From copper wire 8.75 x 10-2ampere electric current passing though in 4800 sec. Number of free electronsper cubic meter in copper wire is 5.8 x 1028. Calculate magnitude of electron’s drift velocity in thediameter of copper wire.arrow_forwardIn the diagram shown below, the four currents are assumed to be held in place at their current locations. The currents have the following values: IA = 3.000 A, IB = 3.000 A, Ic = 1.000 A and Ip = 2.000 A. Let d = 12.500 cm and assume standard x- and y-axes at point P₁. (Be careful about signs!) ΑΟ BO 3d P1 d d OD The angle of the total magnetic field at P₁, as measured from the +y-axis, in degrees and to three decimal places, isarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON