CALC An airplane propeller of total length L rotates around its center with angular speed ω in a magnetic field that is perpendicular to the plane of rotation. Modeling the propeller as a thin, uniform bar, find the potential difference between (a) the center and either end of the propeller and (b) the two ends. (c) If the field is the earth’s field of 0.50 G and the propeller turns at 220 rpm and is 2.0 m long, what is the potential difference between the middle and either end? It this large enough to be concerned about?
CALC An airplane propeller of total length L rotates around its center with angular speed ω in a magnetic field that is perpendicular to the plane of rotation. Modeling the propeller as a thin, uniform bar, find the potential difference between (a) the center and either end of the propeller and (b) the two ends. (c) If the field is the earth’s field of 0.50 G and the propeller turns at 220 rpm and is 2.0 m long, what is the potential difference between the middle and either end? It this large enough to be concerned about?
CALC An airplane propeller of total length L rotates around its center with angular speed ω in a magnetic field that is perpendicular to the plane of rotation. Modeling the propeller as a thin, uniform bar, find the potential difference between (a) the center and either end of the propeller and (b) the two ends. (c) If the field is the earth’s field of 0.50 G and the propeller turns at 220 rpm and is 2.0 m long, what is the potential difference between the middle and either end? It this large enough to be concerned about?
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.