A very long, rectangular loop of wire can slide without friction on a horizontal surface. Initially the loop has part of its area in a region of uniform magnetic field that has magnitude B = 2.90 T and is perpendicular to the plane of the loop. The loop has dimensions 4.00 cm by 60.0 cm, mass 24.0 g, and resistance R = 5.00 × 10 −3 Ω. The loop is initially at rest; then a constant force F ext = 0.180 N is applied to the loop to pull it out of the field ( Fig. P29.46 ). (a) What is the acceleration of the loop when ʋ = 3.00 cm/s? (b) What are the loop’s terminal speed and acceleration when the loop is moving at that terminal speed? (c) What is the acceleration of the loop when it is completely out of the magnetic field? Figure P29.46
A very long, rectangular loop of wire can slide without friction on a horizontal surface. Initially the loop has part of its area in a region of uniform magnetic field that has magnitude B = 2.90 T and is perpendicular to the plane of the loop. The loop has dimensions 4.00 cm by 60.0 cm, mass 24.0 g, and resistance R = 5.00 × 10 −3 Ω. The loop is initially at rest; then a constant force F ext = 0.180 N is applied to the loop to pull it out of the field ( Fig. P29.46 ). (a) What is the acceleration of the loop when ʋ = 3.00 cm/s? (b) What are the loop’s terminal speed and acceleration when the loop is moving at that terminal speed? (c) What is the acceleration of the loop when it is completely out of the magnetic field? Figure P29.46
A very long, rectangular loop of wire can slide without friction on a horizontal surface. Initially the loop has part of its area in a region of uniform magnetic field that has magnitude B = 2.90 T and is perpendicular to the plane of the loop. The loop has dimensions 4.00 cm by 60.0 cm, mass 24.0 g, and resistance R = 5.00 × 10−3 Ω. The loop is initially at rest; then a constant force Fext = 0.180 N is applied to the loop to pull it out of the field (Fig. P29.46). (a) What is the acceleration of the loop when ʋ = 3.00 cm/s? (b) What are the loop’s terminal speed and acceleration when the loop is moving at that terminal speed? (c) What is the acceleration of the loop when it is completely out of the magnetic field?
Blue light has a wavelength of 485 nm. What is the frequency of a photon of blue light?
Question 13
Question 13
What is the wavelength of radiofrequency broadcast of 104 MHz?
Question 14
Question 14
1 Point
3. The output intensity from an x-ray exposure is 4 mGy at 90 cm. What will the intensity of the exposure be at 180 cm?
Question 15
Question 15
1 Point
What is the frequency of an 80 keV x-ray?
Under what condition is IA - BI = A + B?
Vectors
À
and
B
are in the same direction.
Vectors
À
and B
are in opposite directions.
The magnitude of vector
Vectors
À
and
官
B
is zero.
are in perpendicular directions.
For the vectors shown in the figure, express vector
3 in terms of vectors M and N.
M
S
=-M+ Ň
==
S=м- Ñ
S = M +Ñ
+N
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.