CALC A slender rod, 0.240 m long, rotates with an angular speed of 8.80 rad/s about an axis through one end and perpendicular to the rod. The plane of rotation of the rod is perpendicular to a uniform magnetic field with a magnitude of 0.650 T. (a) What is the induced emf in the rod? (b) What is the potential difference between its ends? (c) Suppose instead the rod rotates at 8.80 rad/s about an axis through its center and perpendicular to the rod. In this ease, what is the potential difference between the ends of the rod? Between the center of the rod and one end?
CALC A slender rod, 0.240 m long, rotates with an angular speed of 8.80 rad/s about an axis through one end and perpendicular to the rod. The plane of rotation of the rod is perpendicular to a uniform magnetic field with a magnitude of 0.650 T. (a) What is the induced emf in the rod? (b) What is the potential difference between its ends? (c) Suppose instead the rod rotates at 8.80 rad/s about an axis through its center and perpendicular to the rod. In this ease, what is the potential difference between the ends of the rod? Between the center of the rod and one end?
CALC A slender rod, 0.240 m long, rotates with an angular speed of 8.80 rad/s about an axis through one end and perpendicular to the rod. The plane of rotation of the rod is perpendicular to a uniform magnetic field with a magnitude of 0.650 T. (a) What is the induced emf in the rod? (b) What is the potential difference between its ends? (c) Suppose instead the rod rotates at 8.80 rad/s about an axis through its center and perpendicular to the rod. In this ease, what is the potential difference between the ends of the rod? Between the center of the rod and one end?
At point A, 3.20 m from a small source of sound that is emitting uniformly in all directions, the intensity level is 58.0 dB. What is the intensity of the sound at A? How far from the source must you go so that the intensity is one-fourth of what it was at A? How far must you go so that the sound level is one-fourth of what it was at A?
Make a plot of the acceleration of a ball that is thrown upward at 20 m/s subject to gravitation alone (no drag). Assume upward is the +y direction (and downward negative y).
Lab Assignment #3
Vectors
2. Determine the magnitude and sense of the forces in cables A and B.
30°
30°
300KN
3. Determine the forces in members A and B of the following structure.
30°
B
200kN
Name:
TA:
4. Determine the resultant of the three coplanar forces using vectors. F₁ =500N,
F₂-800N, F, 900N, 0,-30°, 62-50°
30°
50°
F₁ = 500N
= 900N
F₂ = 800N
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY