EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100460300
Author: SERWAY
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 29, Problem 29.28P

A particle in the cyclotron shown in Figure 28.16a gains energy qΔV from the alternating power supply each time it passes from one dee to the other. The time interval for each full orbit is

T = 2 π ω = 2 π m q B

so the particle’s average rate of increase in energy’ is

2 q Δ V T = q 2 B Δ V π m

Notice that this power input is constant in time. On the other hand, the rate of increase in the radius r of its path is not constant. (a) Show that the rate of increase in the radius r of the panicle’s path is given by

d r d t = 1 r Δ V π B

(b) Describe how the path of the particles in Figure 28.16a is consistent with the result of part (a). (c) At what rate is the radial position of the protons in a cyclotron increasing immediately before the protons leave the cyclotron? Assume the cyclotron has an outer radius of 0.350 m, an accelerating voltage of ΔV = 600 V, and a magnetic field of magnitude 0.800 T. (d) By how much does the radius of the protons’ path increase during their last full revolution?

Figure 28.16 (a) A cyclotron consists of an ion source at P, two does D1 and D2 across which an alternating potential difference is applied, and a uniform magnetic field. (The south pole of the magnet is not shown.) (b) The first cyclotron, invented by E. O. Lawrence and M. S. Livingston in 1934.

Chapter 29, Problem 29.28P, A particle in the cyclotron shown in Figure 28.16a gains energy qV from the alternating power supply

(a)

Expert Solution
Check Mark
To determine

To prove: The rate of increase in the radius r of the particles path is given by drdt=1rΔVπB .

Answer to Problem 29.28P

The rate of increase in the radius r of the particles path is given by drdt=1rΔVπB .

Explanation of Solution

Given Info: The time interval of full orbit is 2πmqB and the rate of increase in energy is 2qΔVT=q2BΔVπm .

The formula for the energy is,

E=12mv2 (1)

Here,

m is the mass of proton.

v is the velocity.

Differentiating equation (1) with respect to time

dEdt=mvdvdt

The above equation can be rewritten as,

dvdt=1mvdEdt

Substitute q2BΔVπm for dEdt in the above equation

dvdt=1mvq2BΔVπm (2)

The formula for the centripetal force is,

F=mv2r=qvB

The above equation can be rewritten as,

r=mvqB (3)

Differentiating equation (3) with respect to time

drdt=mqBdvdt (4)

Deducing from equation (2) and equation (4),

drdt=qmVΔVπdrdt=1rBΔVπ

Conclusion:

Therefore, the rate of increase in the radius r of the particles path is given by drdt=1rΔVπB

(b)

Expert Solution
Check Mark
To determine
The path of the particle is consistent.

Answer to Problem 29.28P

The path of the particle is consistent.

Explanation of Solution

Given Info: The time interval of full orbit is 2πmqB and the rate of increase in energy is 2qΔVT=q2BΔVπm .

The formula of change of radius with time is,

drdt=1rΔVπB

The value of the path of the particle is consistent with respect to time as according to the above formula the path is dependent on the radius of circle and the magnitude of the magnetic field which remains constant for a path.

Thus, the path of the particle is consistent.

Conclusion:

Therefore, the path of the particle is consistent.

(c)

Expert Solution
Check Mark
To determine
The rate of increase of the radial direction of proton.

Answer to Problem 29.28P

The rate of increase of the radial direction of proton. is 686.1m/s .

Explanation of Solution

Given Info: The time interval of full orbit is 2πmqB and the rate of increase in energy is 2qΔVT=q2BΔVπm . The outer radius is 0.350m , the accelerating voltage is 600V and the magnitude of magnetic field is 0.800T .

The formula for the change of radius with time is,

drdt=1rΔVπB

Substitute 0.350m for r , 0.800T for B and 600V for ΔV in above equation to find drdt .

drdt=1π(600V)(0.350m)(0.800T)=686.1m/s

Thus, the rate of increase of the radial direction of proton is 686.1m/s .

Conclusion:

Therefore, the rate of increase of the radial direction of proton is 686.1m/s .

(d)

Expert Solution
Check Mark
To determine
The increase in the radius of the path of proton.

Answer to Problem 29.28P

The increase in the radius of the path of proton is 100μm .

Explanation of Solution

Given Info: The time interval of full orbit is 2πmqB and the rate of increase in energy is 2qΔVT=q2BΔVπm . The outer radius is 0.350m , the accelerating voltage is 600V and the magnitude of magnetic field is 0.800T .

The formula for the velocity is,

v=rqBm

Substitute 0.350m for r , 1.6×1019C for q , 1.6×1027kg for m and 0.800T for B in above equation to find v .

v=(0.350m)(1.6×1019C)(0.800T)(1.6×1027kg)=2.8×107m/s

Thus, the velocity of proton is 2.8×107m/s .

The formula for the energy is,

E=12mv2

Substitute 1.6×1027kg for m and 2.8×107m/s for v in above equation to find E .

E=12(1.6×1027kg)(2.8×107m/s)2=6.272×1013J

The formula for the energy at the end is,

Eend=EΔErev=E2qΔV

Substitute 6.272×1013J for E , 1.6×1019C for q and 600V for ΔV in above equation to find Eend .

Eend=EΔErev=6.272×1013J2(1.6×1019C)(600V)=6.272×1013J0.002×1013J=6.270×1013J

The formula for the radius at the end is,

rend=2EendmqB

Substitute 6.27×1013J for Eend , 1.6×1027kg for m , 1.6×1019C for q and 0.800T for B in above equation to find rend .

rend=2(6.27×1013J)(1.6×1027kg)(1.6×1019C)(0.800T)=0.3499m

The formula for the increase in the radius is,

Δr=rrend

Substitute 0.350m for r and 0.3499m for rend in above equation to find Δr

Δr=0.350m0.3499m=0.0001m×(106μm1m)=100μm

Thus the increase in the radius of the path of proton is 100μm .

Conclusion:

Therefore, increase in the radius of the path of proton is 100μm .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The figure displays a region of uniform magnetic field B= 0.04k T directed out of the page. A 2.0 MeV proton -moving to the right in the positive x-direction- enters the field and moves 25 cm along the path shown. Determine the angle (in degrees) between the proton's initial velocity and its final velocity just after it exits the field. .... . o/. . ..
Al aproximarse un tren a la estacion por una via recta la velocidad es de (-15i-18j)m/s en ese momento el maquinista desconecta la locomotora produciendo una desaceleracion de modulo 0,5m/s2. determinar el desplazamiento del tren hasta su parada la distancia recorrida el tiempo empleado la velocidad media la rapidez media When a train approaches the station on a straight track, the speed is (-15i-18j) m / s at that moment the driver disconnects the locomotive producing a deceleration of modulus 0.5m/s2 . determine the displacement of the train to its stop the distance traveled the time spent average speed
A cyclotron is used to produce a beam of high-energy deuterons that then collide with a target to produce radioactive isotopes for a medical procedure. Deuterons are nuclei of deuterium, an isotope of hydrogen, consisting of one neutron and one proton, with total mass 3.34×10−27kg. The deuterons exit the cyclotron with a kinetic energy of 6.10 MeV . What is the speed of the deuterons when they exit? If the magnetic field inside the cyclotron is 1.25 T, what is the diameter of the deuterons' largest orbit, just before they exit? If the beam current is 380 μA how many deuterons strike the target each second?

Chapter 29 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 29 - Prob. 29.7OQCh. 29 - Classify each of die following statements as a...Ch. 29 - An electron moves horizontally across the Earths...Ch. 29 - A charged particle is traveling through a uniform...Ch. 29 - In the velocity selector shown in Figure 29.13....Ch. 29 - Prob. 29.12OQCh. 29 - A magnetic field exerts a torque on each of the...Ch. 29 - Can a constant magnetic field set into motion an...Ch. 29 - Explain why it is not possible to determine the...Ch. 29 - Is it possible to orient a current loop in a...Ch. 29 - How can the motion of a moving charged particle be...Ch. 29 - Prob. 29.5CQCh. 29 - Charged panicles from outer space, called cosmic...Ch. 29 - Two charged particles are projected in the same...Ch. 29 - At the equator, near the surface of the Earth, the...Ch. 29 - Determine the initial direction of the deflection...Ch. 29 - Find the direction of the magnetic field acting on...Ch. 29 - Consider an electron near the Earths equator. In...Ch. 29 - Prob. 29.5PCh. 29 - A proton moving at 4.00 106 m/s through a...Ch. 29 - An electron is accelerated through 2.40 103 V...Ch. 29 - A proton moves with a velocity of v = (2i 4j + k)...Ch. 29 - A proton travels with a speed of 5.02 106 m/s in...Ch. 29 - A laboratory electromagnet produces a magnetic...Ch. 29 - A proton moves perpendicular to a uniform magnetic...Ch. 29 - Review. A charged particle of mass 1.50 g is...Ch. 29 - An electron moves in a circular path perpendicular...Ch. 29 - An accelerating voltage of 2.50103 V is applied to...Ch. 29 - A proton (charge + e, mass mp), a deuteron (charge...Ch. 29 - A particle with charge q and kinetic energy K...Ch. 29 - Review. One electron collides elastically with a...Ch. 29 - Review. One electron collides elastically with a...Ch. 29 - Review. An electron moves in a circular path...Ch. 29 - Review. A 30.0-g metal hall having net charge Q =...Ch. 29 - A cosmic-ray proton in interstellar space has an...Ch. 29 - Assume the region to the right of a certain plane...Ch. 29 - A singly charged ion of mass m is accelerated from...Ch. 29 - A cyclotron designed to accelerate protons has a...Ch. 29 - Prob. 29.25PCh. 29 - Singly charged uranium-238 ions are accelerated...Ch. 29 - A cyclotron (Fig. 28.16) designed to accelerate...Ch. 29 - A particle in the cyclotron shown in Figure 28.16a...Ch. 29 - Prob. 29.29PCh. 29 - Prob. 29.30PCh. 29 - Prob. 29.31PCh. 29 - A straight wire earning a 3.00-A current is placed...Ch. 29 - A conductor carrying a current I = 15.0 A is...Ch. 29 - A wire 2.80 m in length carries a current of 5.00...Ch. 29 - A wire carries a steady current of 2.40 A. A...Ch. 29 - Why is the following situation impossible? Imagine...Ch. 29 - Review. A rod of mass 0.720 kg and radius 6.00 cm...Ch. 29 - Review. A rod of mass m and radius R rests on two...Ch. 29 - A wire having a mass per unit length of 0.500 g/cm...Ch. 29 - Consider the system pictured in Figure P28.26. A...Ch. 29 - A horizontal power line oflength 58.0 in carries a...Ch. 29 - A strong magnet is placed under a horizontal...Ch. 29 - Assume the Earths magnetic field is 52.0 T...Ch. 29 - In Figure P28.28, the cube is 40.0 cm on each...Ch. 29 - Prob. 29.45PCh. 29 - A 50.0-turn circular coil of radius 5.00 cm can be...Ch. 29 - A magnetized sewing needle has a magnetic moment...Ch. 29 - A current of 17.0 mA is maintained in a single...Ch. 29 - An eight-turn coil encloses an elliptical area...Ch. 29 - Prob. 29.50PCh. 29 - A rectangular coil consists of N = 100 closely...Ch. 29 - A rectangular loop of wire has dimensions 0.500 m...Ch. 29 - A wire is formed into a circle having a diameter...Ch. 29 - A Hall-effect probe operates with a 120-mA...Ch. 29 - Prob. 29.55PCh. 29 - Prob. 29.56APCh. 29 - Prob. 29.57APCh. 29 - Prob. 29.58APCh. 29 - A particle with positive charge q = 3.20 10-19 C...Ch. 29 - Figure 28.11 shows a charged particle traveling in...Ch. 29 - Review. The upper portion of the circuit in Figure...Ch. 29 - Within a cylindrical region of space of radius 100...Ch. 29 - Prob. 29.63APCh. 29 - (a) A proton moving with velocity v=ii experiences...Ch. 29 - Review. A 0.200-kg metal rod carrying a current of...Ch. 29 - Prob. 29.66APCh. 29 - A proton having an initial velocity of 20.0iMm/s...Ch. 29 - Prob. 29.68APCh. 29 - A nonconducting sphere has mass 80.0 g and radius...Ch. 29 - Why is the following situation impossible? Figure...Ch. 29 - Prob. 29.71APCh. 29 - A heart surgeon monitors the flow rate of blood...Ch. 29 - A uniform magnetic Held of magnitude 0.150 T is...Ch. 29 - Review. (a) Show that a magnetic dipole in a...Ch. 29 - Prob. 29.75APCh. 29 - Prob. 29.76APCh. 29 - Consider an electron orbiting a proton and...Ch. 29 - Protons having a kinetic energy of 5.00 MeV (1 eV...Ch. 29 - Review. A wire having a linear mass density of...Ch. 29 - A proton moving in the plane of the page has a...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY