EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100460300
Author: SERWAY
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 29.63AP
To determine
The radius of the alpha particle’s trajectory.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A beryllium-9 ion has a positive charge that is double the charge of a proton, and a mass of 1.50 ✕ 10−26 kg. At a particular instant, it is moving with a speed of 5.10 ✕ 106 m/s through a magnetic field. At this instant, its velocity makes an angle of 61° with the direction of the magnetic field at the ion's location. The magnitude of the field is 0.220 T.
a) What is the magnitude of the magnetic force (in N) on the ion?
b) What is the magnitude of the ion's acceleration (in m/s2) at this instant?
Please answer a and b
A student performs an experiment to study the magnetic force on a current carrying wire placed in an external magnetic field. The magnetic field is
uniform. A wire is placed making an angle 0 with the magnetic field lines. The student keeps the magnetic field, the current flowing in the wire and the
length of the wire fixed. She measures the force on the wire for different values of 0. She wants to plot F versus some function of 0, such that she can
obtain a linear graph. What function of 0 should she use?
Select one:
O cot(0)
cos(0)
sin(0)
O tan(0)
Chapter 29 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 29 - An electron moves in the plane of this paper...Ch. 29 - Prob. 29.2QQCh. 29 - A wire carries current in the plane of this paper...Ch. 29 - (i) Rank the magnitudes of the torques acting on...Ch. 29 - Prob. 29.1OQCh. 29 - Rank the magnitudes of' the forces exerted on the...Ch. 29 - A particle with electric charge is fired into a...Ch. 29 - A proton moving horizontally enters a region where...Ch. 29 - Prob. 29.5OQCh. 29 - A thin copper rod 1.00 in long has a mass of 50.0...
Ch. 29 - Prob. 29.7OQCh. 29 - Classify each of die following statements as a...Ch. 29 - An electron moves horizontally across the Earths...Ch. 29 - A charged particle is traveling through a uniform...Ch. 29 - In the velocity selector shown in Figure 29.13....Ch. 29 - Prob. 29.12OQCh. 29 - A magnetic field exerts a torque on each of the...Ch. 29 - Can a constant magnetic field set into motion an...Ch. 29 - Explain why it is not possible to determine the...Ch. 29 - Is it possible to orient a current loop in a...Ch. 29 - How can the motion of a moving charged particle be...Ch. 29 - Prob. 29.5CQCh. 29 - Charged panicles from outer space, called cosmic...Ch. 29 - Two charged particles are projected in the same...Ch. 29 - At the equator, near the surface of the Earth, the...Ch. 29 - Determine the initial direction of the deflection...Ch. 29 - Find the direction of the magnetic field acting on...Ch. 29 - Consider an electron near the Earths equator. In...Ch. 29 - Prob. 29.5PCh. 29 - A proton moving at 4.00 106 m/s through a...Ch. 29 - An electron is accelerated through 2.40 103 V...Ch. 29 - A proton moves with a velocity of v = (2i 4j + k)...Ch. 29 - A proton travels with a speed of 5.02 106 m/s in...Ch. 29 - A laboratory electromagnet produces a magnetic...Ch. 29 - A proton moves perpendicular to a uniform magnetic...Ch. 29 - Review. A charged particle of mass 1.50 g is...Ch. 29 - An electron moves in a circular path perpendicular...Ch. 29 - An accelerating voltage of 2.50103 V is applied to...Ch. 29 - A proton (charge + e, mass mp), a deuteron (charge...Ch. 29 - A particle with charge q and kinetic energy K...Ch. 29 - Review. One electron collides elastically with a...Ch. 29 - Review. One electron collides elastically with a...Ch. 29 - Review. An electron moves in a circular path...Ch. 29 - Review. A 30.0-g metal hall having net charge Q =...Ch. 29 - A cosmic-ray proton in interstellar space has an...Ch. 29 - Assume the region to the right of a certain plane...Ch. 29 - A singly charged ion of mass m is accelerated from...Ch. 29 - A cyclotron designed to accelerate protons has a...Ch. 29 - Prob. 29.25PCh. 29 - Singly charged uranium-238 ions are accelerated...Ch. 29 - A cyclotron (Fig. 28.16) designed to accelerate...Ch. 29 - A particle in the cyclotron shown in Figure 28.16a...Ch. 29 - Prob. 29.29PCh. 29 - Prob. 29.30PCh. 29 - Prob. 29.31PCh. 29 - A straight wire earning a 3.00-A current is placed...Ch. 29 - A conductor carrying a current I = 15.0 A is...Ch. 29 - A wire 2.80 m in length carries a current of 5.00...Ch. 29 - A wire carries a steady current of 2.40 A. A...Ch. 29 - Why is the following situation impossible? Imagine...Ch. 29 - Review. A rod of mass 0.720 kg and radius 6.00 cm...Ch. 29 - Review. A rod of mass m and radius R rests on two...Ch. 29 - A wire having a mass per unit length of 0.500 g/cm...Ch. 29 - Consider the system pictured in Figure P28.26. A...Ch. 29 - A horizontal power line oflength 58.0 in carries a...Ch. 29 - A strong magnet is placed under a horizontal...Ch. 29 - Assume the Earths magnetic field is 52.0 T...Ch. 29 - In Figure P28.28, the cube is 40.0 cm on each...Ch. 29 - Prob. 29.45PCh. 29 - A 50.0-turn circular coil of radius 5.00 cm can be...Ch. 29 - A magnetized sewing needle has a magnetic moment...Ch. 29 - A current of 17.0 mA is maintained in a single...Ch. 29 - An eight-turn coil encloses an elliptical area...Ch. 29 - Prob. 29.50PCh. 29 - A rectangular coil consists of N = 100 closely...Ch. 29 - A rectangular loop of wire has dimensions 0.500 m...Ch. 29 - A wire is formed into a circle having a diameter...Ch. 29 - A Hall-effect probe operates with a 120-mA...Ch. 29 - Prob. 29.55PCh. 29 - Prob. 29.56APCh. 29 - Prob. 29.57APCh. 29 - Prob. 29.58APCh. 29 - A particle with positive charge q = 3.20 10-19 C...Ch. 29 - Figure 28.11 shows a charged particle traveling in...Ch. 29 - Review. The upper portion of the circuit in Figure...Ch. 29 - Within a cylindrical region of space of radius 100...Ch. 29 - Prob. 29.63APCh. 29 - (a) A proton moving with velocity v=ii experiences...Ch. 29 - Review. A 0.200-kg metal rod carrying a current of...Ch. 29 - Prob. 29.66APCh. 29 - A proton having an initial velocity of 20.0iMm/s...Ch. 29 - Prob. 29.68APCh. 29 - A nonconducting sphere has mass 80.0 g and radius...Ch. 29 - Why is the following situation impossible? Figure...Ch. 29 - Prob. 29.71APCh. 29 - A heart surgeon monitors the flow rate of blood...Ch. 29 - A uniform magnetic Held of magnitude 0.150 T is...Ch. 29 - Review. (a) Show that a magnetic dipole in a...Ch. 29 - Prob. 29.75APCh. 29 - Prob. 29.76APCh. 29 - Consider an electron orbiting a proton and...Ch. 29 - Protons having a kinetic energy of 5.00 MeV (1 eV...Ch. 29 - Review. A wire having a linear mass density of...Ch. 29 - A proton moving in the plane of the page has a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Niels Bohr’s 1913 model of the hydrogen atom, the single electron is in a circular orbit of radius 5.29 × 10−11 m and its speed is 2.19 × 106 m/s. (a) What is the magnitude of the magnetic moment due to the electron’s motion? (b) If the electron moves in a horizontal circle, counterclockwise as seen from above, what is the direction of this magnetic moment vector?arrow_forwardA particle moving downward at a speed of 6.0106 m/s enters a uniform magnetic field that is horizontal and directed from east to west. (a) If the particle is deflected initially to the north in a circular arc, is its charge positive or negative? (b) If B = 0.25 T and the charge-to-mass ratio (q/m) of the particle is 40107 C/kg. what is ±e radius at the path? (c) What is the speed of the particle after c has moved in the field for 1.0105s ? for 2.0s?arrow_forwardAn iron (density ρ) rod with length L, cross sectional area A, spans across two parallel, metal train tracks. The tracks are connected to a power supply and have a potential ∆V across them. Between the tracks are placed magnets such that the B-field points directly upwards with strength B. What is the acceleration of the iron rod be the moment it starts from rest? What will acceleration be as a function of speed as it continues? Assume the contact is frictionless between the tracks and the rod so that no force of friction needs to be overcome. What will the top speed of the rod be under these conditions?arrow_forward
- A particle with mass 3×10−2 kgkg and charge +7 μCμC enters a region of space where there is a magnetic field of 1 TT that is perpendicular to the velocity of the particle. When the particle encounters the magnetic field, it experiences an acceleration of 17 m/s2m/s2 . What is the speed of the particle when it enters the magnetic-field region? Express your answer in meters per second.arrow_forward6arrow_forwardAnswer is already indicated, just show solutionsarrow_forward
- The aurora is caused when electrons and protons, moving in the earth's magnetic field of 5.00 × 10−5 T, collide with molecules of the atmosphere and cause them to glow. What is the radius of the circular orbit for a proton with speed 4.20 × 106 m/s, in meters? Assume that the electron moves in a plane perpendicular to the magnetic field. The mass of a proton is 1.67 × 10−27kg. Your answer needs to have 3 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement. 2- diagram belowarrow_forwardA proton is traveling through a region of space containing both a magnetic and electric field. At one instant in time, the velocity is v = (49200 1 +67200 j) m/s and the acceleration is a = ( 9.45 Â ) x 10⁹ m/s². If ỗ = ( 9.60 ŵ) mT, what is the magnitude of the electric field? i N/Carrow_forwardIn a nuclear research laboratory, a proton moves in a particle accelerator through a magnetic field of intensity 0.229 T at a speed of 3.2 × 107 m/s. The charge of a proton is 1.60218 × 10−19 C. A. If the proton is moving perpendicular to the field, what force acts on it? B. If the proton of mass 1.67262 × 10−27 kg continues to move in a direction that is consistently perpendicular to the field, what is the radius of curvature of its path?.arrow_forward
- A proton is at rest at the plane boundary of a region containing a uniform magnetic field B (as shown). An alpha particle moving horizontally makes a head-on elastic collision with the proton. Immediately after the collision, both particles enter the magnetic field, moving perpendicular to the direction of the field. The radius of the proton’s trajectory is R. The mass of the alpha particle is four times that of the proton, and its charge is twice that of the proton. Find the radius of the alpha particle’s trajectory.arrow_forwardA proton moving at speed v = 1.00 x 106m/s enters a region in space where a magnetic fi eld given by B= (–0.500 T) z exists. The velocity vector of the proton is at an angle θ= 60.0° with respect to the positive z-axis. a) Analyze the motion of the proton and describe its trajectory (in qualitative terms only). b) Calculate the pitch of the motion (the distance traveled by the proton in the direction of the magnetic field in 1 period).arrow_forwardcan you please ans (g) (h)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill