An accelerating voltage of 2.50 x 103 V is applied to an electron gun, producing a beam of electrons originally traveling horizontally north in vacuum toward the center of a viewing screen 35.0 cm away. What are (a) the magnitude and (b) the direction of the deflection on the screen caused by the Earth’s gravitational field? What are (c) the magnitude and (d) the direction of the deflection on the screen caused by the vertical component of the Earth’s magnetic field, taken as 20.0 μT down? (e) Does an electron in this vertical magnetic field move as a projectile, with constant vector acceleration perpendicular to a constant northward component of velocity? (f) Is it a good approximation to assume it has this projectile motion? Explain.
An accelerating voltage of 2.50 x 103 V is applied to an electron gun, producing a beam of electrons originally traveling horizontally north in vacuum toward the center of a viewing screen 35.0 cm away. What are (a) the magnitude and (b) the direction of the deflection on the screen caused by the Earth’s gravitational field? What are (c) the magnitude and (d) the direction of the deflection on the screen caused by the vertical component of the Earth’s magnetic field, taken as 20.0 μT down? (e) Does an electron in this vertical magnetic field move as a projectile, with constant vector acceleration perpendicular to a constant northward component of velocity? (f) Is it a good approximation to assume it has this projectile motion? Explain.
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 6 images