When a hydrocarbon fuel is burned, almost all of the carbon in the fuel burns completely to form CO 2 (carbon dioxide), which is the principal gas causing the greenhouse effect and thus global climate change. On average, 0.59 kg of CO 2 is produced for each kWh of electricity generated from a power plant that burns natural gas. A typical new household refrigerator uses about 700 kWh of electricity per year. Determine the amount of CO 2 production that is due to the refrigerators in a city with 300,000 households.
When a hydrocarbon fuel is burned, almost all of the carbon in the fuel burns completely to form CO 2 (carbon dioxide), which is the principal gas causing the greenhouse effect and thus global climate change. On average, 0.59 kg of CO 2 is produced for each kWh of electricity generated from a power plant that burns natural gas. A typical new household refrigerator uses about 700 kWh of electricity per year. Determine the amount of CO 2 production that is due to the refrigerators in a city with 300,000 households.
Solution Summary: The author calculates the amount of CO_Text2 production per year for 300,000 households.
When a hydrocarbon fuel is burned, almost all of the carbon in the fuel burns completely to form CO2 (carbon dioxide), which is the principal gas causing the greenhouse effect and thus global climate change. On average, 0.59 kg of CO2 is produced for each kWh of electricity generated from a power plant that burns natural gas. A typical new household refrigerator uses about 700 kWh of electricity per year. Determine the amount of CO2 production that is due to the refrigerators in a city with 300,000 households.
The external loads on the element shown below at the free end are F = 1.75 kN, P = 9.0
kN, and T = 72 Nm.
The tube's outer diameter is 50 mm and the inner diameter is 45 mm.
Given: A(the cross-sectional area) is 3.73 cm², Moment inertial I is 10.55 cm4, and J
polar moment inertial is 21.1 cm4.
Determine the following.
(1) The critical element(s) of the bar.
(2) Show the state of stress on a stress element for each critical element.
-120 mm-
F
A crate weighs 530 lb and is hung by three ropes attached to
a steel ring at A such that the top surface is parallel to the
xy plane. Point A is located at a height of h = 42 in above
the top of the crate directly over the geometric center of the
top surface. Use the dimensions given in the table below to
determine the tension in each of the three ropes.
2013 Michael Swanbom
↑ Z
C
BY NC SA
b
x
B
у
D
Values for dimensions on the figure are given in the following
table. Note the figure may not be to scale.
Variable Value
a
30 in
b
43 in
с
4.5 in
The tension in rope AB is
lb
The tension in rope AC is
lb
The tension in rope AD is
lb
The airplane weighs 144100 lbs and flies at constant speed
and trajectory given by 0 on the figure. The plane
experiences a drag force of 73620 lbs.
a.) If = 11.3°, determine the thrust and lift forces
required to maintain this speed and trajectory.
b.) Next consider the case where is unknown, but it is
known that the lift force is equal to 7.8 times the quantity
(Fthrust Fdrag). Compute the resulting trajectory angle
-
and the lift force in this case. Use the same values for the
weight and drag forces as you used for part a.
Уллу
Fdrag
10.
Ө
Fthrust
cc 10
2013 Michael Swanbom
BY NC SA
Flift
Fweight
The lift force acts in the y' direction. The weight acts in the
negative y direction. The thrust and drag forces act in the
positive and negative x' directions respectively.
Part (a)
The thrust force is equal to
lbs.
The lift force is equal to
Part (b)
The trajectory angle is equal to
deg.
The lift force is equal to
lbs.
lbs.
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.