Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2.8, Problem 15P
A water jet that leaves a nozzle at 60 m/s at a flow rate of 120 kg/s is to be used to generate power by striking the buckets located on the perimeter of a wheel. Determine the power generation potential of this water jet.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Water is pumped from a lake to a storage tank 25 m above at a rate of 70 L's while consuming 22.4 kW of electric power. Disregarding any frictional losses in the pipes and any changes in
kinetic energy, determine the overall efficiency of the pump-motor unit.
Storage tank
25 m
Pump
Water is pumped from a lake to a storage tank 18 m above at a rate of 70 L/s while consuming 20.4 kW of electric power The top of the tank is open to the atmosphere. Disregarding any frictional losses in the pipes and any changes in kinetic energy, determine (a) the overall efficiency of the pump–motor unit and (b) the pressure difference between the inlet and the exit of the pump.
A pump rated at 1800W is used to transfer water from an open tank to another tank. The surfaces of the 2 tanks are kept 20m apart vertically, while mass flow of the water is 5kg/s. What is the efficiency of the pump?
Chapter 2 Solutions
Thermodynamics: An Engineering Approach
Ch. 2.8 - What is the difference between the macroscopic and...Ch. 2.8 - What is total energy? Identify the different forms...Ch. 2.8 - List the forms of energy that contribute to the...Ch. 2.8 - How are heat, internal energy, and thermal energy...Ch. 2.8 - What is mechanical energy? How does it differ from...Ch. 2.8 - Portable electric heaters are commonly used to...Ch. 2.8 - Natural gas, which is mostly methane CH4, is a...Ch. 2.8 - Consider the falling of a rock off a cliff into...Ch. 2.8 - Electric power is to be generated by installing a...Ch. 2.8 - The specific kinetic energy of a moving mass is...
Ch. 2.8 - Determine the specific kinetic energy of a mass...Ch. 2.8 - Calculate the total potential energy, in Btu, of...Ch. 2.8 - Determine the specific potential energy, in kJ/kg,...Ch. 2.8 - An object whose mass is 100 kg is located 20 m...Ch. 2.8 - A water jet that leaves a nozzle at 60 m/s at a...Ch. 2.8 - Consider a river flowing toward a lake at an...Ch. 2.8 - At a certain location, wind is blowing steadily at...Ch. 2.8 - What is the caloric theory? When and why was it...Ch. 2.8 - In what forms can energy cross the boundaries of a...Ch. 2.8 - What is an adiabatic process? What is an adiabatic...Ch. 2.8 - When is the energy crossing the boundaries of a...Ch. 2.8 - Consider an automobile traveling at a constant...Ch. 2.8 - A room is heated by an iron that is left plugged...Ch. 2.8 - A room is heated as a result of solar radiation...Ch. 2.8 - A gas in a pistoncylinder device is compressed,...Ch. 2.8 - A small electrical motor produces 5 W of...Ch. 2.8 - A car is accelerated from rest to 85 km/h in 10 s....Ch. 2.8 - A construction crane lifts a prestressed concrete...Ch. 2.8 - Determine the torque applied to the shaft of a car...Ch. 2.8 - A spring whose spring constant is 200 lbf/in has...Ch. 2.8 - How much work, in kJ, can a spring whose spring...Ch. 2.8 - A ski lift has a one-way length of 1 km and a...Ch. 2.8 - The engine of a 1500-kg automobile has a power...Ch. 2.8 - A damaged 1200-kg car is being towed by a truck....Ch. 2.8 - As a spherical ammonia vapor bubble rises in...Ch. 2.8 - A steel rod of 0.5 cm diameter and 10 m length is...Ch. 2.8 - What are the different mechanisms for transferring...Ch. 2.8 - For a cycle, is the net work necessarily zero? For...Ch. 2.8 - On a hot summer day, a student turns his fan on...Ch. 2.8 - Water is being heated in a closed pan on top of a...Ch. 2.8 - An adiabatic closed system is accelerated from 0...Ch. 2.8 - A fan is to accelerate quiescent air to a velocity...Ch. 2.8 - A vertical pistoncylinder device contains water...Ch. 2.8 - At winter design conditions, a house is projected...Ch. 2.8 - A water pump increases the water pressure from 15...Ch. 2.8 - The lighting needs of a storage room are being met...Ch. 2.8 - A university campus has 200 classrooms and 400...Ch. 2.8 - Consider a room that is initially at the outdoor...Ch. 2.8 - An escalator in a shopping center is designed to...Ch. 2.8 - Consider a 2100-kg car cruising at constant speed...Ch. 2.8 - Prob. 51PCh. 2.8 - What is mechanical efficiency? What does a...Ch. 2.8 - How is the combined pumpmotor efficiency of a pump...Ch. 2.8 - Can the combined turbinegenerator efficiency be...Ch. 2.8 - Consider a 2.4-kW hooded electric open burner in...Ch. 2.8 - The steam requirements of a manufacturing facility...Ch. 2.8 - Reconsider Prob. 256E. Using appropriate software,...Ch. 2.8 - A 75-hp (shaft output) motor that has an...Ch. 2.8 - Prob. 59PCh. 2.8 - An exercise room has six weight-lifting machines...Ch. 2.8 - A room is cooled by circulating chilled water...Ch. 2.8 - The water in a large lake is to be used to...Ch. 2.8 - A 7-hp (shaft) pump is used to raise water to an...Ch. 2.8 - A geothermal pump is used to pump brine whose...Ch. 2.8 - At a certain location, wind is blowing steadily at...Ch. 2.8 - Reconsider Prob. 265. Using appropriate software,...Ch. 2.8 - Water is pumped from a lower reservoir to a higher...Ch. 2.8 - An 80-percent-efficient pump with a power input of...Ch. 2.8 - Water is pumped from a lake to a storage tank 15 m...Ch. 2.8 - Large wind turbines with a power capacity of 8 MW...Ch. 2.8 - A hydraulic turbine has 85 m of elevation...Ch. 2.8 - The water behind Hoover Dam in Nevada is 206 m...Ch. 2.8 - An oil pump is drawing 44 kW of electric power...Ch. 2.8 - A wind turbine is rotating at 15 rpm under steady...Ch. 2.8 - How does energy conversion affect the environment?...Ch. 2.8 - What is acid rain? Why is it called a rain? How do...Ch. 2.8 - Why is carbon monoxide a dangerous air pollutant?...Ch. 2.8 - What is the greenhouse effect? How does the excess...Ch. 2.8 - What is smog? What does it consist of? How does...Ch. 2.8 - Consider a household that uses 14,000 kWh of...Ch. 2.8 - When a hydrocarbon fuel is burned, almost all of...Ch. 2.8 - Prob. 82PCh. 2.8 - A typical car driven 20,000 km a year emits to the...Ch. 2.8 - Prob. 84PCh. 2.8 - What are the mechanisms of heat transfer?Ch. 2.8 - Which is a better heat conductor, diamond or...Ch. 2.8 - How does forced convection differ from natural...Ch. 2.8 - What is a blackbody? How do real bodies differ...Ch. 2.8 - Define emissivity and absorptivity. What is...Ch. 2.8 - Does any of the energy of the sun reach the earth...Ch. 2.8 - The inner and outer surfaces of a 5-m 6-m brick...Ch. 2.8 - The inner and outer surfaces of a 0.5-cm-thick 2-m...Ch. 2.8 - Reconsider Prob. 292. Using appropriate software,...Ch. 2.8 - Prob. 94PCh. 2.8 - Prob. 95PCh. 2.8 - Prob. 96PCh. 2.8 - Prob. 97PCh. 2.8 - For heat transfer purposes, a standing man can be...Ch. 2.8 - Prob. 99PCh. 2.8 - Prob. 100PCh. 2.8 - A 1000-W iron is left on the ironing board with...Ch. 2.8 - A 7-cm-external-diameter, 18-m-long hot-water pipe...Ch. 2.8 - A thin metal plate is insulated on the back and...Ch. 2.8 - Reconsider Prob. 2103. Using appropriate software,...Ch. 2.8 - The outer surface of a spacecraft in space has an...Ch. 2.8 - Prob. 106PCh. 2.8 - A hollow spherical iron container whose outer...Ch. 2.8 - Some engineers have developed a device that...Ch. 2.8 - Consider a classroom for 55 students and one...Ch. 2.8 - Consider a homeowner who is replacing his...Ch. 2.8 - Prob. 111RPCh. 2.8 - The U.S. Department of Energy estimates that...Ch. 2.8 - A typical household pays about 1200 a year on...Ch. 2.8 - Prob. 114RPCh. 2.8 - Prob. 115RPCh. 2.8 - Prob. 116RPCh. 2.8 - Consider a TV set that consumes 120 W of electric...Ch. 2.8 - Water is pumped from a 200-ft-deep well into a...Ch. 2.8 - Consider a vertical elevator whose cabin has a...Ch. 2.8 - Prob. 120RPCh. 2.8 - In a hydroelectric power plant, 65 m3/s of water...Ch. 2.8 - The demand for electric power is usually much...Ch. 2.8 - The pump of a water distribution system is powered...Ch. 2.8 - Prob. 124RPCh. 2.8 - A 2-kW electric resistance heater in a room is...Ch. 2.8 - Prob. 126FEPCh. 2.8 - A 75-hp compressor in a facility that operates at...Ch. 2.8 - On a hot summer day, the air in a well-sealed room...Ch. 2.8 - A fan is to accelerate quiescent air to a velocity...Ch. 2.8 - A 900-kg car cruising at a constant speed of 60...Ch. 2.8 - Prob. 131FEPCh. 2.8 - Prob. 132FEPCh. 2.8 - A 2-kW pump is used to pump kerosene ( = 0.820...Ch. 2.8 - Prob. 134FEPCh. 2.8 - Prob. 135FEPCh. 2.8 - Prob. 136FEPCh. 2.8 - Prob. 137FEPCh. 2.8 - Heat is transferred steadily through a...Ch. 2.8 - The roof of an electrically heated house is 7 m...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What is the weight in newtons of an object that has a mass of (a) 8 kg, (b) 0.04 kg, (c) 760 Mg?
Statics and Mechanics of Materials (5th Edition)
The triple jump is a track-and-field event in which an athlete gets a running start and tries to leap as far as...
Vector Mechanics For Engineers
Consider a subsonic compressible flow in cartesian coordinates where the velocity potential is given by (x,y)=V...
Fundamentals of Aerodynamics
The moment of inertia Iy for the slender rod in terms of the rod’s total mass m .
Engineering Mechanics: Statics & Dynamics (14th Edition)
CONCEPT QUESTIONS
15.CQ3 The ball rolls without slipping on the fixed surface as shown. What is the direction ...
Vector Mechanics for Engineers: Statics and Dynamics
A pipe flowing light oil has a manometer attached, as shown in Fig, P1.52. What is the absolute pressure in pip...
Fundamentals Of Thermodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water enters a pump at 350 kPa at a rate of 1 kg/s. The water leaving the pump enters a turbine in which the pressure is reduced and electricity is produced. The shaft power input to the pump is 1 KW snd the shaft power output the turbine is 1 kW. Both the pump and turbine are 90% efficient. If the elevation and velocity of the water remain constant through out the flow and irreversible headloss is 1 m, the pressure of water in kPa at the turbine exit is A. 131 B. 129 C. 126 D. 127 With F.B.Darrow_forwardWater enters a pump at 350 kPa at a rate of 1 kg/s. The water leaving the pump enters a turbine in which the pressure is reduced and electricity is produced. The shaft power input to the pump is 1 KW snd the shaft power output the turbine is 1 kW. Both the pump and turbine are 90% efficient. If the elevation and velocity of the water remain constant through out the flow and irreversible headloss is 1 m, the pressure of water in kPa at the turbine exit is. Shoe FBD A. 129 B. 126 C. 131 D. 127arrow_forwardWater enters a pump at 350 kPa at a rate of 1 kg/s. The water leaving the pump enters a turbine in which the pressure is reduced and electricity is produced. The shaft power input to the pump is 1 KW snd the shaft power output the turbine is 1 kW. Both the pump and turbine are 90% efficient. If the elevation and velocity of the water remain constant through out the flow and irreversible headloss is 1 m, the pressure of water in kPa at the turbine exit is (WITH FREE BODY DIAGRAM) CHOICES: A.126 B.127 C.129 D.131arrow_forward
- Water enters a pump at 350 kPa at a rate of 1 kg/s. The water leaving the pump enters a turbine in which the pressure is reduced and electricity is produced. The shaft power input to the pump is 1 KW snd the shaft power output the turbine is 1 kW. Both the pump and turbine are 90% efficient. If the elevation and velocity of the water remain constant through out the flow and irreversible headloss is 1 m, the pressure of water in kPa at the turbine exit is? Include FBD. Choices: A.126 B.127 C.129 D.131arrow_forwardWater enters a pump at 350 kPa at a rate of 1 kg/s. The water leaving the pump enters a turbine in which the pressure is reduced and electricity is produced. The shaft power input to the pump is 1 KW snd the shaft power output the turbine is 1 kW. Both the pump and turbine are 90% efficient. If the elevation and velocity of the water remain constant through out the flow and irreversible headloss is 1 m, the pressure of water in kPa at the turbine exit is A.126 B.129 C.131 D.127arrow_forwardA single stage impulse turbine with a diameter of 120 cm runs at 3000 rpm. If the blade speed ratio is 0.42, determine the inlet velocity of steam.arrow_forward
- A 10,000 KW run-of-river hydro-electric plant has an available head of 200 ft and has an overall efficiency of 90% that remains constant for all loads. For a given day during the low-water season the customers receiving primary power have the following loads: 8000KW for 2 hrs, 6000 KW for 2 hours, 4000 KW for 10 hrs, 2000 KW for 10 hrs. For a river flow remaining onstant at 525 ft/s, how much secondary power could this plant provide during the entire day?arrow_forwardWater is stored in an elevated reservoir. To generate power, water flows from this reservoir down through a large conduit to a turbine and then through a similar-sized conduit. At a point in the conduit 89.5 m above the turbine, the pressure is 172.4 kPa and at a level 5 m below the turbine, the pressure is 89.6 kPa The water flow rate is 0.800ms The output of the shaft the turbine is 658 kW. The water density is 1000 ke m. If the efficiency of the turbine in converting the mechanical energy gven up by the fluid to the turbine shaft is 89 % (n =0.89). a) Draw a schematic diagram for the process b) Calculate the frictional loss in the turbine in J kg %3Darrow_forwardA pumped storage scheme comprises two reversible pump turbines which transfer water between an upper and lower reservoir with a head difference of 400m. During a typical daily cycle, electrical power of 120kW is supplied to the pumps which deliver 15 litres/s for 6 hours overnight to the upper reservoir. During the daylight hours, a flow of 10 litres/s is used to release the same quantity of water to generate electrical energy. If the efficiency during generation is 90%, how much energy is lost per day? d. A horizontal-axis wind turbine with rotor 80m in diameter is 40% efficient in 15m/s wind at 600m altitude and 30°C. Calculate the total amount of power the wind turbine would produce in those winds. TABLE 6.1 Density of Dry Air at a Pressure of 1 Atmosphere i. Temperature Temperature Density Density Ratio (°C) (°F) (kg/m³) (KT) iii. -15 -10 -5 5 10 15 : 30 35 40 5.0 14.0 23.0 32.0 41.0 50.0 59.0 68.0 77.0 $6.0 95.0 104.0 1.368 1.342 1.317 1.293 1.269 1.247 1.225 1.204 1.184 1.165…arrow_forward
- A motor-pump system with 90% efficiency is designed to increase the pressure of was from 101kPa to 250 kPa while water is flowing at a rate of 2 m^3/s. Assuming no change in the kinetic and potential energy of water, what is the expected electric power usage of the system?arrow_forwardWater is pumped from a lake to a storage tank 15 m above at a rate of 70 L/s while consuming 15.4 kW of electric power, as shown in Figure 4 below. Disregarding any frictional losses in the pipes and any changes in kinetic energy, determine a) the overall efficiency of the pump-motor unit and; b) the pressure difference between the inlet and the exit of the pump. Storage tank 15 m Pump Figure 4arrow_forwardA submersible pump with a shaft power of 6 kW and an efficiency of 75% is used to pump water from a lake to a pool through a constant diameter pipe. The free surface of the pool is 30 m above the free surface of the lake. If the irreversible head loss in the piping system is 5 m, determine the discharge rate of water and pressure difference across the pump.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License