Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 28, Problem 68P
For RLC circuits in which the resistance isn’t too high, the Q factor may be defined as the ratio of the resonant frequency to the difference between the two frequencies where the power dissipated in the circuit is half the power dissipated at resonance. Using suitable approximations, show that this definition leads to Q = ω0L/R, with ω0 the resonant frequency.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An RLC series circuit consists of a 10-Ω resistor, an 8.0-μF capacitor, and a 50-mH inductor. A 110-V (rms) source of variable frequency is connected across the combination. What is the power output of the source when its frequency is set to one-half the resonant frequency of the circuit?
In an RLC circuit such as that of the figure assume that R = 4.21 Ω, L = 78.5 mH, fd = 49.9 Hz, and εm = 38.0 V. For what values of the capacitance would the average rate at which energy is dissipated in the resistance be (a) a maximum and minimum? What are (b) the maximum dissipation rate and the corresponding phase angle and power factor? What are (c) the minimum dissipation rate and the corresponding phase angle and power factor?
The capacitance in a series RCL circuit is C₁ = 3.7 µF, and the corresponding resonant frequency is fo1 = 8.9 kHz. The generator
frequency is 2.7 kHz. What is the value of the capacitance C₂ that should be added to the circuit so that the circuit will have a resonant
frequency that matches the generator frequency?
C₂ =
Chapter 28 Solutions
Essential University Physics (3rd Edition)
Ch. 28.1 - What are the peak voltage and angular frequency of...Ch. 28.2 - Prob. 28.2GICh. 28.3 - You have an LC circuit that oscillates at a...Ch. 28.4 - You measure the capacitor and inductor voltages in...Ch. 28.5 - A resistor and capacitor are connected in series...Ch. 28.6 - A distribution line in a city supplies AC power at...Ch. 28 - Two AC signals have the same amplitude but...Ch. 28 - Whats meant by the statement, A capacitor acts...Ch. 28 - Theres an insulating gap between capacitor plates,...Ch. 28 - Why does it make sense that inductive reactance...
Ch. 28 - The same AC voltage appears across a capacitor and...Ch. 28 - When a particular inductor and capacitor are...Ch. 28 - An inductor and capacitor are connected in series...Ch. 28 - When the capacitor voltage in an undriven LC...Ch. 28 - Why is Equation 28.5 not a full description of the...Ch. 28 - The applied voltage in a series RLC circuit lags...Ch. 28 - The voltage across two components in series is...Ch. 28 - If you measure the rms voltages across the...Ch. 28 - A step-up transformer increases voltage, or energy...Ch. 28 - Much of Europe uses AC power at 230 V rms and 50...Ch. 28 - An industrial electric motor runs at 208 V rms and...Ch. 28 - An AC current is given by I = 495 sin(9.43t), with...Ch. 28 - Prob. 17ECh. 28 - Find the rms current in a 1.0-F capacitor...Ch. 28 - A 470- resistor, 10-F capacitor, and 750-mH...Ch. 28 - Find the reactance of a 3.3-F capacitor at (a) 60...Ch. 28 - A 15-F capacitor carries 1.4 A rms. Whats its...Ch. 28 - A capacitor and a 1.8-k resistor pass the same...Ch. 28 - A 50-mH inductor is connected across a 10-V rms AC...Ch. 28 - Find the resonant frequency of an LC circuit...Ch. 28 - An LC circuit with C = 18 mF undergoes...Ch. 28 - Your sister whos building the radio (Chapter 27...Ch. 28 - An LC circuit with a 20-F capacitor oscillates...Ch. 28 - A series RLC circuit has R = 75 k, L = 20 mH, and...Ch. 28 - Find the impedance at 10 kHz of a circuit...Ch. 28 - A series RLC circuit has R = 18 k, C = 14 F, and L...Ch. 28 - If the peak voltage applied to produce the curves...Ch. 28 - An electric drill draws 4.6 A rms at 120 V rms. If...Ch. 28 - A 40-W fluorescent lamp has power factor 0.85 and...Ch. 28 - An electric water heater draws 20 A rms at 240 V...Ch. 28 - For safety, medical equipment connected to...Ch. 28 - Youre planning a semester in China, so you want to...Ch. 28 - (a) A 2.2-H inductor is connected across 120-V...Ch. 28 - A 2.0-F capacitor has 1.0-k reactance. (a) Whats...Ch. 28 - Show that the unit of both capacitive and...Ch. 28 - Electroencephalography (EEG) elucidates brain...Ch. 28 - At 15 kHz an inductor has 12 times the reactance...Ch. 28 - A 0.75-H inductor is in series with a fluorescent...Ch. 28 - A 2.2-nF capacitor and one of unknown capacitance...Ch. 28 - Connections to the body for electrocardiography...Ch. 28 - The FM radio band covers the frequency range 88108...Ch. 28 - An LC circuit includes a 0.025-F capacitor and a...Ch. 28 - One-eighth of a cycle after the capacitor in an LC...Ch. 28 - The 2420-F capacitor in Fig. 28.25 is initially...Ch. 28 - A damped LC circuit consists of a 0.15-F capacitor...Ch. 28 - A damped RLC circuit includes a 5.0- resistor and...Ch. 28 - An RLC circuit includes a 1.5-H inductor and a...Ch. 28 - The table below shows the ratio of peak voltage to...Ch. 28 - Figure 28.26 shows the phasor diagram for an RLC...Ch. 28 - An AC voltage of fixed amplitude is applied across...Ch. 28 - A series RLC circuit has resistance 127 and...Ch. 28 - A series RLC circuit has power factor 0.764 and...Ch. 28 - Youre Chief Financial Officer for a power company,...Ch. 28 - A car-battery charger runs off the 120-V rms AC...Ch. 28 - A power supply like that of Fig. 28.23 is supposed...Ch. 28 - An RLC circuit includes a 3.3-F capacitor and a...Ch. 28 - A series RLC circuit with R = 1.3 , L = 27 mH, and...Ch. 28 - Differentiate Equation 28.9 to find the current in...Ch. 28 - Find a second frequency where the current in the...Ch. 28 - Two capacitors are connected in parallel across a...Ch. 28 - A black box has two input connections and two...Ch. 28 - A series RLC circuit with R = 47 , L = 250 mH, and...Ch. 28 - A sine-wave generator with 20-V peak output is...Ch. 28 - For RLC circuits in which the resistance isnt too...Ch. 28 - A triangle wave swings linearly between voltages...Ch. 28 - Substitute the expression for q(t) in Equation...Ch. 28 - Although the maximum current flows in the speaker...Ch. 28 - Your professor tells you about the days before...Ch. 28 - A filter is a circuit designed to pass AC signals...Ch. 28 - A filter is a circuit designed to pass AC signals...Ch. 28 - A filter is a circuit designed to pass AC signals...Ch. 28 - A filter is a circuit designed to pass AC signals...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Write each number in decimal form.
38. 4.05 × 100
Applied Physics (11th Edition)
Draw and label a free-body diagram for system C at a time following the release of the blocks. Indicate separat...
Tutorials in Introductory Physics
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
In the text, we showed that if the Clausius statement is false, the Kelvin statement must also be false. Now sh...
University Physics Volume 2
Using the information listed above, does Earth stay the same distance from the Sun throughout the year? If not,...
Lecture- Tutorials for Introductory Astronomy
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In a purely inductive AC circuit as shown in Figure P21.15, Vmax = 100. V. (a) The maximum current is 7.50 A at 50.0 Hz. Calculate the inductance L. (b) At what angular frequency is the maximum current 2.50A? Figure p21.15arrow_forwardA 40-mH inductor is connected to a 60-Hz AC source whose voltage amplitude is 50 V. If an AC voltmeter is placed across the inductor, what does it read?arrow_forwardCalculate the reactance of a 5.0F capacitor at (a) 60 Hz, (b) 600 Hz, and (c) 6000 Hz.arrow_forward
- In an oscillating RLC circuit, R = 7.0 L. = 10 mH. And C = 3.0 F. Initially, the capacitor has a charge of 8.0 C and the current is zero. Calculate the charge on the capacitor (a) five cycles later and (b) 50 cycles later.arrow_forwardWhat is the impedance of a series combination of a 50resistor, a 5.0F capacitor, and a 10F capacitor at a frequency of 2.0 kHz?arrow_forwardThe emf of an ac source is given by v(t)=V0sint, where V0=100V and =200 . Find an expression that represents the output current of the source if it is connected across (a) a 20-pF capacitor, (b) a 20-mH inductor, and (c) a 50 resistor.arrow_forward
- Review. The voltage phasor diagram for a certain series RLC circuit is shown in Figure P33.59. The resistance of the circuit is 75.0 , and the frequency is 60.0 Hz. Find (a) the maximum voltage Vmax, (b) the phase angle , (c) the maximum current, (d) the impedance, (e) the capacitance and (f) the inductance of the circuit, and (g) the average power delivered to the circuit.arrow_forwardA 20-mH inductor is connected across an AC source with a variable frequency and a constant-voltage amplitude of 9.0 V. (a) Determine the reactance of the circuit and the maximum current through the inductor when the frequency Is set at 20 kHz. (b) Do the same calculations for a frequency of 60 Hz.arrow_forwardA 1.5k resistor and 30-mH inductor are connected in series, as below, across a120-V(rms)ac power source oscillating at 60-Hz frequency. (a) Find the current in the circuit. (b) Find the voltage drops across the resistor and inductor. (C) Find the impedance of the circuit. (d) Find the power dissipated in the resistor. (e) Find the power dissipated in the inductor. (1) Find the power produced by the source.arrow_forward
- In a series RLC circuit with a maximum current of 0.250 A, an AC source with Vmax= 115 V operating at 60.0 Hz is connected to a 325-mH inductor, a 7.50-F capacitor, and a resistor with unknown resistance R. Draw a phasor diagram for this circuit, including the current, the potential difference across each of the circuit elements, and the source emf. Draw your diagram with the current phasor pointing upward along the vertical axis.arrow_forwardIn the AC circuit shown in Figure P32.3, R = 70.0 and the output voltage of the AC source is Vmax sin t. (a) If VR = 0.250 Vmax for the first time at t = 0.0100 s, what is the angular frequency of the source? (b) What is the next value of t for which VR = 0.250 Vmax? Figure P32.6 Problem 3 and 5.arrow_forwardAn RLC series circuit consists of a 50 resistor, a 200F capacitor, and a 120-mN inductor whose coil has a resistance of 20. The source for the circuit has an tins emf of 240 V at a frequency of 60 Hz. Calculate the tins voltages across the (a) resistor, (b) capacitor, and (c) inductor.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY