Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28.2, Problem 28.2GI
To determine
To compare: The current in the capacitor and inductor, which are connected across two separate but identical electric generators, with the frequency of the generators, doubled.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The voltage across an inductor is proportional to the inductor and the derivative of the current that flow through it.
Is it True or False?
A 5.0 mH inductor and a 10.0 N resistor are connected in series with a 6.0 V ideal battery and
a switch. (a) Immediately after the switch is closed what is the voltage across and current in
the resistor? (b) Immediately after the switch is closed what is the voltage across and current
in the inductor? (c) How long will it take to reach 75.0% of the maximum current in the
inductor? (d) After a long time what is the voltage across and the current in the resistor?
(e) After a long time what is the voltage across and the current in the inductor? (f) Include a
(a) The current through a 2.0 μF capacitor when connected to a 20V generator is 0.16 A. Determine the frequency of the generator. (b) What is the current through a 0.20 H inductor when connected by itself across the same generator.
Chapter 28 Solutions
Essential University Physics (3rd Edition)
Ch. 28.1 - What are the peak voltage and angular frequency of...Ch. 28.2 - Prob. 28.2GICh. 28.3 - You have an LC circuit that oscillates at a...Ch. 28.4 - You measure the capacitor and inductor voltages in...Ch. 28.5 - A resistor and capacitor are connected in series...Ch. 28.6 - A distribution line in a city supplies AC power at...Ch. 28 - Two AC signals have the same amplitude but...Ch. 28 - Whats meant by the statement, A capacitor acts...Ch. 28 - Theres an insulating gap between capacitor plates,...Ch. 28 - Why does it make sense that inductive reactance...
Ch. 28 - The same AC voltage appears across a capacitor and...Ch. 28 - When a particular inductor and capacitor are...Ch. 28 - An inductor and capacitor are connected in series...Ch. 28 - When the capacitor voltage in an undriven LC...Ch. 28 - Why is Equation 28.5 not a full description of the...Ch. 28 - The applied voltage in a series RLC circuit lags...Ch. 28 - The voltage across two components in series is...Ch. 28 - If you measure the rms voltages across the...Ch. 28 - A step-up transformer increases voltage, or energy...Ch. 28 - Much of Europe uses AC power at 230 V rms and 50...Ch. 28 - An industrial electric motor runs at 208 V rms and...Ch. 28 - An AC current is given by I = 495 sin(9.43t), with...Ch. 28 - Prob. 17ECh. 28 - Find the rms current in a 1.0-F capacitor...Ch. 28 - A 470- resistor, 10-F capacitor, and 750-mH...Ch. 28 - Find the reactance of a 3.3-F capacitor at (a) 60...Ch. 28 - A 15-F capacitor carries 1.4 A rms. Whats its...Ch. 28 - A capacitor and a 1.8-k resistor pass the same...Ch. 28 - A 50-mH inductor is connected across a 10-V rms AC...Ch. 28 - Find the resonant frequency of an LC circuit...Ch. 28 - An LC circuit with C = 18 mF undergoes...Ch. 28 - Your sister whos building the radio (Chapter 27...Ch. 28 - An LC circuit with a 20-F capacitor oscillates...Ch. 28 - A series RLC circuit has R = 75 k, L = 20 mH, and...Ch. 28 - Find the impedance at 10 kHz of a circuit...Ch. 28 - A series RLC circuit has R = 18 k, C = 14 F, and L...Ch. 28 - If the peak voltage applied to produce the curves...Ch. 28 - An electric drill draws 4.6 A rms at 120 V rms. If...Ch. 28 - A 40-W fluorescent lamp has power factor 0.85 and...Ch. 28 - An electric water heater draws 20 A rms at 240 V...Ch. 28 - For safety, medical equipment connected to...Ch. 28 - Youre planning a semester in China, so you want to...Ch. 28 - (a) A 2.2-H inductor is connected across 120-V...Ch. 28 - A 2.0-F capacitor has 1.0-k reactance. (a) Whats...Ch. 28 - Show that the unit of both capacitive and...Ch. 28 - Electroencephalography (EEG) elucidates brain...Ch. 28 - At 15 kHz an inductor has 12 times the reactance...Ch. 28 - A 0.75-H inductor is in series with a fluorescent...Ch. 28 - A 2.2-nF capacitor and one of unknown capacitance...Ch. 28 - Connections to the body for electrocardiography...Ch. 28 - The FM radio band covers the frequency range 88108...Ch. 28 - An LC circuit includes a 0.025-F capacitor and a...Ch. 28 - One-eighth of a cycle after the capacitor in an LC...Ch. 28 - The 2420-F capacitor in Fig. 28.25 is initially...Ch. 28 - A damped LC circuit consists of a 0.15-F capacitor...Ch. 28 - A damped RLC circuit includes a 5.0- resistor and...Ch. 28 - An RLC circuit includes a 1.5-H inductor and a...Ch. 28 - The table below shows the ratio of peak voltage to...Ch. 28 - Figure 28.26 shows the phasor diagram for an RLC...Ch. 28 - An AC voltage of fixed amplitude is applied across...Ch. 28 - A series RLC circuit has resistance 127 and...Ch. 28 - A series RLC circuit has power factor 0.764 and...Ch. 28 - Youre Chief Financial Officer for a power company,...Ch. 28 - A car-battery charger runs off the 120-V rms AC...Ch. 28 - A power supply like that of Fig. 28.23 is supposed...Ch. 28 - An RLC circuit includes a 3.3-F capacitor and a...Ch. 28 - A series RLC circuit with R = 1.3 , L = 27 mH, and...Ch. 28 - Differentiate Equation 28.9 to find the current in...Ch. 28 - Find a second frequency where the current in the...Ch. 28 - Two capacitors are connected in parallel across a...Ch. 28 - A black box has two input connections and two...Ch. 28 - A series RLC circuit with R = 47 , L = 250 mH, and...Ch. 28 - A sine-wave generator with 20-V peak output is...Ch. 28 - For RLC circuits in which the resistance isnt too...Ch. 28 - A triangle wave swings linearly between voltages...Ch. 28 - Substitute the expression for q(t) in Equation...Ch. 28 - Although the maximum current flows in the speaker...Ch. 28 - Your professor tells you about the days before...Ch. 28 - A filter is a circuit designed to pass AC signals...Ch. 28 - A filter is a circuit designed to pass AC signals...Ch. 28 - A filter is a circuit designed to pass AC signals...Ch. 28 - A filter is a circuit designed to pass AC signals...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The current I(t) through a 5.0-mH inductor varies with time, as shown below. The resistance of the inductor is 5.0 . Calculate the voltage across the inductor at t = 2.0 ms, r = 4.0 ms, and t = 8.0 ms.arrow_forwardIn Figure 14.12, =12V , L = 20 mH, and R=5.0. Determine (a) the time constant of the circuit, (b) the initial current through the resistor, (C) the final current through the resistor, (d) the current through the resistor when t=2L , and (e) the voltages across the inductor and the resistor when t=2L .arrow_forwardA battery providing emf V is connected in series to a resistor R and an inductor L, and left until the current reaches a constant value. (a) What is the energy stored in the inductor in terms of V, R and L? Then, at t = 0, the battery is suddenly removed, so that only the inductor and resistor are left connected to each other in a closed circuit. (b) Derive an expression for the energy stored in the inductor in the new circuit without the battery. Sketch your expression as a function of time. (c) How long does it take for the energy stored in the inductor to decay to 1/9 of the initial value that you found in part (a)?arrow_forward
- An 8.5 nF capacitor is initially charged by connecting it to a 120 V power supply and then disconnected. It is then connected in series with a 0.35 mH inductor. Find the (a) maximum charge on the capacitor, (b) period of oscillation of the circuit, and (c) maximum current in the circuit.arrow_forwardA 15.0 mF capacitor is charged by a 150.0 V power supply, then disconnected from the power and connected in series with a 0.280 mH inductor. Calculate: (a) the oscillation frequency of the circuit; (b) the energy stored in the capacitor at time t = 0 ms (the moment of connection with the inductor); (c) the energy stored in the inductor at t = 1.30 msarrow_forwardA resistor R and an ideal inductor L are connected in series to an ideal batteryhaving a constant terminal voltage V0. At the moment contact is made with thebattery (S1 closed, S2 open),(a) the voltage across the resistor isA) V0B) V0/eC) V0/2D) zero(b) the voltage across the inductor isA) V0B) V0/eC) V0/2D) zeroarrow_forward
- A battery is connected in series with an R = 3.50-Ω resistor and an L = 0.530-H inductor, as in the figure. The switch S is closed at t = 0 and the maximum current in the circuit is Imax = 4.20 A. (a) Determine the emf of the battery. (b) Determine the current in the circuit after one time constant has elapsed. (c) Determine the voltage across the inductor after one time constant has elapsed. (d) Determine the rate of change of the current after one time constant.arrow_forwardA 24.0-V battery is connected in series with a resistor and an inductor, with R = 9.40 2 and L = 8.80 H, respectively. (a) Find the energy stored in the inductor when the current reaches its maximum value. (b) Find the energy stored in the inductor at an instant that is a time interval of one time constant after the switch is closed.arrow_forwardA 12.0-V battery is connected into a series circuit containing a 20.0-2 resistor and a 1.70-H inductor. (a) In what time interval will the current reach 50.0% of its final value? S (b) In what time interval will the current reach 90.0% of its final value? Sarrow_forward
- A 24-V battery is connected in series with a resistor and an inductor, with R = 6.8 Ω and L = 5.4 H, respectively. (a) Find the energy stored in the inductor when the current reaches its maximum value. J(b) Find the energy stored in the inductor one time constant after the switch is closed. Jarrow_forwardConsider a capacitor C = 1.0 × 10¬4 Farad connected to an inductor L = 2.0 × 10¯³ Henry as shown in Fig. 8. At t= 0, i= 0 and the charge on the capacitor is 3 .0 × 102 Coulomb. (a) V(0) = ? (b) Calculate V(t) and I(t). (c) Calculate the energy stored in C and L as a function of time t and show that Ec(t) + EL(t) constant. Hint: Use Kirchhoff's voltage law to obtain the equation q/C + L d2q/dt2 = 0. The general solution has the form q(t) = qo sin (ot + po) where qo and po can be determined from the initial conditions at t = 0. Figure 8.arrow_forwardA 12.0 V battery is connected into a series circuit containing a 20.0 resistor and a 1.50 H inductor. (a) In what time interval (in s) will the current reach 50.0% of its final value? S (b) In what time interval (in s) will the current reach 90.0% of its final value? S What If? After a very long time, using a switch like that shown in the figure below, the battery is removed and the inductor is connected directly across the resistor. R Są ob ก ε ele (c) In what time interval (in s) will the current decrease to 50.0% of its initial value? S (d) In what time interval (in s) will the current decrease to 10.0% of its initial value? Sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning